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Resumo

O ISTsat-1 é um satélite pertencente à classe de cubesats que foi concebido por estudante e alunos

do Instituto Superior Técnico (IST) ao abrigo do programa educacional Fly Your Satellite da Agência

Espacial Europeia (ESA). O objectivo desta missão é fazer seguimento dos sinais ADS-B de aviões

e a respectiva caracterização. Uma das prioridades da plataforma será garantir que o satélite aponta

para a direcção desejada de forma a cumprir a missão, assim como garantir que o satélite não adquire

rotação excessiva. Este trabalho foca-se no desenvolvimento do Sistema de Determinação e Controlo

de Atitude que garanta estas condições. O sistema foi desenvolvido para ser integrado na plataforma

fı́sica previamente desenvolvida para o computador de bordo. O obstáculo que se pretende vencer é

garantir que o satélite cumpre os requisitos de orientação impostos pela missão usando uma plataforma

de baixo custo e de baixo consumo energético. Para avaliar possı́veis soluções usou-se a ferramenta

Simulink que permitiu modelar o satélite e o ambiente fı́sico a que estará sujeito. Em seguida estudou-

se o problema da atitude testando algoritmos de estimação de atitude com baixos requisitos computa-

cionais. Finalmente a solução para a determinação de atitude permitiu estudar soluções para o prob-

lema de controlo de atitude também estas focadas na eficiência computacional. Os resultados mostram

que é possı́vel usar soluções rápidas, eficientes e de baixo custo para desenvolver satélites com baixos

requisitos de orientação.

Palavras-chave: Satélite, CubeSat, ISTsat, Atitude, Estimação, Controlo
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Abstract

The ISTsat-1 is a cubesat satellite developed by students from Instituto Superior Técnico (IST) under the

ESA educational program Fly Your Satellite. The objective of this mission is to monitor and characterize

the ADS-B signals from aircraft. One of the priorities of the satellite platform is to point it into the desired

direction with a certain level of accuracy to accomplish the mission as well as to ensure the satellite

does not get excessive rotation. This work focuses the development of the Attitude Determination and

Control System which will ensure these conditions. The system was developed to be integrated into the

physical platform previously designed for the onboard computer. The challenge to surpass is to ensure

the satellite reaches the pointing requirements posed by the payload while using a low-cost and low-

power platform. To evaluate the possible solutions the Simulink tool was used, allowing to model the

satellite and the environment to which the satellite will be subjected. Afterwards, the problem was studied

using computational light attitude estimation algorithms. Finally, the attitude determination solutions

allowed to study control solutions also focused on computational efficiency. The results demonstrate

that it is possible to use quick, efficient and low-cost solutions to develop satellites with low orientation

requirements.

Keywords: Satellite, CubeSat, ISTsat, Attitude, Estimation, Control
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Chapter 1

Introduction

1.1 Motivation

The satellites are unmanned vehicles that flight through space without the possibility of human direct

intervention. As such, the Attitude Determination and Control System plays a crucial role in tasks re-

lated to the satellite orientation, e.g. pointing the communication antennas to the Earth or pointing the

payload devices to the desired direction. These are some of the most common critical actions the ADCS

must ensure autonomously throughout the satellite life and the main reasons why most of the satellites

include one. Although the satellites fly in space they are not exempt from external torques and forces

and even despite them the satellite must point in the right direction. To provide an estimation of towards

where the satellite is oriented a set of sensors is used to gather data which will then be used in estima-

tion algorithms to guess the satellite attitude. The work around the attitude estimation, got a major boost

due the space race between U.S.A. and the U.S.S.R. during the Cold War. After the war ended space

agencies continued to design space exploration missions, driving the growth of the satellite attitude es-

timation technology along with it.

Most launchers were built to put in orbit very large satellites and most of the times they were used the

payload was smaller than what they were design for. To monetize the available payload space com-

panies started to sell the remaining cargo space not used by the main payload providing a piggyback

launch. To this smaller payload a proportional smaller price was associated allowing for entities to launch

smaller budget satellites promoting the development of small satellite technology. The reduced cost of

the smaller satellite open the doors of this exclusive industry, year by year more space companies are

created.

The small satellites categories according to their size are established as: the biggest minisatellite which

comprises of satellites between 100 kg to 500 kg, then the microsatellite for satellites between 100 kg to

500 kg, the nanosatellite designating the satellites in the 10 kg to 1 kg range and the smallest the pi-

cosatellite for satellites below the 1 kg threshold.

In 1999, the California Polytechnic State University along with its partners created a nanosatellite stan-

dard to facilitate the access for universities to acquire space components. By creating a standard,
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companies could now provide off-the-shelf compatible components to integrate satellites decreasing the

design time and overall cost. CalPoly established the geometric unit as a 10 cm cube with up to 1.33 kg,

due to its geometry this format was designed as CubeSat. The development of this standard promote the

industrial and academic growth of space technology, as seen in the following graph the yearly number

of launched satellites has been growing.

Figure 1.1: Number of launched nanosatellites per year (taken from Nanosats Database at

www.nanosats.eu)

1.2 Problem Statement

The ISTsat-1 satellite is the first satellite mission of a group of students from the Instituto Superior

Técnico called NanoSat. The purpose of this mission is to study the Automatic Dependent Surveillance-

Broadcast (ADS-B) signals from low earth orbit (LEO). The ADS-B is an automatic signal that broadcasts

the aircraft position posing as a monitoring signal for ground stations and other aircraft. With the increas-

ing air traffic worldwide the transmission of ADS-B is becoming mandatory for commercial aircraft.

Being a 1U cubesat, the ISTsat-1 has serious geometry limitations i.e. needs to use solar panels to re-

plenish its energy but the small area available reduces the available energy per orbit. As a consequence

the power budget of each system is limited and the design of each system is centred in maximising

energy efficiency. The average power consumption per orbit must be lower than 40mW . The commu-

nication subsystem also has some demands for the ADCS system, namely to establish a good commu-

nication link the satellite must not surpass the limit angular rate of 5 o/s. ISTsat-1 payload antenna was

design to cover a 600 km diameter area and it needs some insurance the satellite is pointing to NADIR

to be able to characterize the ADS-B signals thus it was established the pointing error should be less

than 20 o. At 400 km this error limit corresponds to a deviation of 145.6 km from the NADIR point. Lastly,
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there are some concerns regarding tumbling after being launched and while not pointing to NADIR.

Consequently, the ADCS must have a mode where it only reduces the excess of angular rotation. The

actual tumbling rate after launch is unknown. However it is known the satellite will be launched from ISS

through JAXA robotic arm. This will limit the tumbling to a very low value but was specified the satellite

should be able to stop tumbling from at least 30 o/s angular rate. To save space, during the mission

design it was established the ADCS was to be embedded into the Onboard Computer (OBC) module.

Both system will share the same computational resources using a real time operating system to manage

each subsystem task. This fusion emphasizes the efficiency of ADCS algorithms options.

1.3 Thesis Outline

The proposed approach for this thesis started with a briefly technical background review presenting the

coordinate frames that will be used in chapter 2.

Then, in chapter 3, a review of the basic mechanics involved in 3D rigid body dynamics was presented

highlighting relevant specific orbital flight environment forces which were coded into the orbital simulator.

Next, in chapter 4, followed an explanation about the physical satellite model focusing the most important

components of the ADCS and how their characteristics were mathematically modelled into the simulator.

Having finished presenting the mechanics background needed to simulate the satellite movement in

chapter 5 some solutions for the attitude problem were presented, starting with the simpler solutions,

then including dynamic models and finally gyro bias estimation.

After solving the attitude problem the focus was steered into solving the control problem. In chapter

6 this problem was divided into two parts based on the mission requirements: detumbling and NADIR

pointing.

After all the theoretical presentation of the solutions the attitude determination and control methods were

finally tested in a simulator whose configuration and results were discussed in chapter 7.

Lastly the conclusions from the results and remaining work were discussed in chapter 8 with a small

remark for future work and possible future approaches.
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Chapter 2

Theoretical Background

2.1 Reference Frames

To understand the context of the three dimensional space dynamics quantities involved in this thesis and

also to describe them accurately four different reference coordinate frames will be introduced based on

the literature [1], [2], [3].

2.1.1 Earth Centered Inertial

The Earth-Centered-Inertial (ECI) frame is centred in Earth and it is represented through its basis I =

{i1 , i2 , i3}. The i1 vector belongs to the ecliptic plane and it is pointing to the vernal equinox direction,

i3 vector is aligned with the Earth spin axis and it points toward the North pole, finally the i2 completes

the right-handed orthogonal reference frame.

i1

i2

i3

Equator

Ecliptic

Greenwich meridian

Figure 2.1: Earth Centered Inertial Reference Frame.

Although the name suggest that the ECI is not a true inertial frame, due to a precession in the ecliptic

pole which usually is neglected as the period of that precession, around 26000 years, it is much greater

than the lifetime discussed in most space flights.
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2.1.2 Earth Centered Earth Fixed

The Earth-Centered-Earth-Fixed reference frame is a frame also centred in the Earth and will be repre-

sented with the basis E = {e1 , e2 , e3}. The e3 vector is aligned with Earth spin axis, pointing to the

North pole, the e1 vector points towards the intersection of prime meridian (Greenwich) with the equa-

torial plane, the e2 vector points in the direction that completes the right-handed orthogonal reference

frame. As it can be seen in figure 2.2, the ECEF frame relates to the ECI through a rotation in the

i1

i2

i3

e1

e2

e3

GMST

Figure 2.2: Earth Centered Earth Fixed Reference Frame.

spin axis of the Earth i3 which is coincident with e3, this displacement is known as the Greenwich Mean

Sidereal Time (GMST).

Sometimes it is useful to represent vector and points in this frame with a set of spherical coordinates

known as Global Position System (GPS) coordinates or LLA, whose three basis are θlla, φlla and rlla

[2]. The first is known as latitude and represents the angular displacement to equatorial plane, the

second known as longitude represents the angular distance to the prime meridian or axis e1 and finally

rlla which represents the distance to the center of the frame.

e1

e2

e3

r

φ

θ

Figure 2.3: GPS spherical coordinates on ECEF frame.

2.1.3 Orbit

The Orbit frame follows the movement of the satellite in regard to the Earth, being quite helpful for de-

coupling position and motion regarding the Earth. The orbit frame is defined as O = {o1 , o2 , o3}, the
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second base vector o2 has the same direction as the satellite orbit plane normal, o3 is collinear to vector

from Earth to Satellite and lastly the o1 completes the right-handed orthogonal system. The frame was

defined with o2 and o3 purposely different from the literature for convenience of the control reference

orientation.

i1

i2

i3

ĥ

o3

o1

o2

Figure 2.4: Orbit Reference Frame.

2.1.4 Body

The body reference frame is the spacecraft/satellite own coordinate frame, with the origin in its center of

mass and designated with the basis B = {b1 , b2 , b3}. As the CUBESAT standard has established b3

vector is perpendicular to the launcher rails, b1 is perpendicular to the access port face and b2 completes

the right-hand coordinate system.

+Y

+Z

+X

b2

b3

b1

Figure 2.5: Diagram of the satellite B reference frame.

This reference frame is useful to represent how the satellite perceives and interacts with the environment,

how it evaluates the system state. Therefore is usually the preferred main reference frame, where the

control is designed to operate. From the body frame another reference frame will be derived used
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mainly for the attitude representation which is the estimator reference frame and depicts the satellite

assessment of the body frame.

2.2 Rotation Matrix

The rotation matrices has a special structure denoted as orthogonal three by three matrices, i.e. belongs

to the R3 that represent tridimensional rotations allowing to rotate frames, vectors and quantities over

different reference frames. The matrix
[
Rji

]
represents a transformation from the space a to b and when

multiplied by a generic vector va expressed in a it generates the representation of the vector va in frame

b.

vb =
[
Rba
]
va (2.1)

The rotation matrices are orthogonal matrices thus their determinant should be unitary and multiplying

them with vectors never changes the norm of the vector. Also as a consequence, the matrix used to

represent the inverse rotation, from frame b to a is the transpose matrix used to rotate from a to b.

[Rab ] =
[
Rba
]−1

=
[
Rba
]T

(2.2)

Sequential rotations are achieved simply by multiplying the rotations matrices, such that a rotation from

frame a to frame b could be perceived as a rotation from frame a to frame b and then from frame b to

frame c. This is useful as enables the separation of a rotation operation into two or more known rotations.

[Rca] = [Rcb] ·
[
Rba
]

(2.3)

2.3 Attitude Representation

To understand rigid body dynamics in space it is necessary to first establish a method to represent the

orientation of the satellite. The orientation of the satellite could be represented with the coordinates of

the satellite body frame in the reference frame of choice or as a rotation from the reference frame to the

satellite body frame. There are many different methods which could be used each with its own set of

advantages but in throughout this work the approaches used to represent the attitude were the rotation

matrix, the rotation vector and the quaternion [4].

2.3.1 Attitude Matrix

The attitude of a satellite can be represented as a rotation from the reference frame to the body frame

and throughout this work the standard reference frame shall be the ECI. Being a rotation by definition

allows it to be written as one of the rotation matrices referred in the previous chapter. To differentiate

from other rotation matrices this attitude shall be identified as A.
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A =
[
RBI
]

(2.4)

2.3.2 Rotation Vector

Although matrices are very useful to rotate vectors they aren’t very helpful to understand the rotation nor

the attitude except in a few very specific cases. Another much simpler alternative is to see the attitude

as a rotation along an axis described in the global frame. Therefore an axis and an angle displacement

allow to reduce the need from 9 variables to 4, 3 for the axis and 1 for the rotation. With this representa-

tion is much easier to visualize the attitude. With this form there is also a constrain in the axis of rotation

where its magnitude has to be unitary.

v =

θ
n

 , ||n|| = 1 (2.5)

The rotation vector v can be used to express the attitude matrix A with the following form:

A(v) = I3×3 − sin θ [n]× + (1 − cos θ) [n]
2
× (2.6)

Using this representation the attitude visualization and analysis is easier but this method is not very

convenient for computations. For further explanation see [5].

2.3.3 Quaternion

The quaternion was a concept introduced by Hamilton in 1844 as a hyper-complex extension of the

complex space Z space with four components q = q0 + iq1 + jq2 + kq3 with the following rules:

i2 + j2 + k2 = −1 (2.7a)

ij = −ji = k (2.7b)

jk = −kj = i (2.7c)

ki = −ik = j (2.7d)

qT q = 1 (2.7e)

There are other possible forms to establish the quaternion frame but the presented shall be the one used

throughout this document. The complex part of the quaternion, ε, represents the three coordinates of
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the rotation axis while the real part, η is represents the angular displacement of the rotation.

q =


η

ε1

ε2

ε3

 (2.8)

The transformation from the attitude quaternion to the attitude matrix is given by the following equation.

A(q) =
(
η2 − ||ε||2

)
I3×3 − 2η [ε×] + 2εεT (2.9a)

=


η2 + ε21 − ε22 − ε23 2(ε1ε2 + ηε3) 2(ε1ε3 − ηε2)

2(ε1ε2 − ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 + ηε1)

2(ε1ε3 + ηε2) 2(ε2ε3 − ηε1) η2 − ε21 − ε22 + ε23

 (2.9b)

The inverse operation of generating a quaternion q equivalent to a specific rotation [R] is also possible

and shall be identified with the notation q (R) but due the more complex operation the transformation

shall be inserted into annex.

[
Rba
]
→ q

([
Rba
])

= qba (2.10)

Similarly to the rotation matrix, the inverse rotation of a particular quaternion is described as it’s inverse

more so in quaternion notation that is equal to the conjugate.

qab =
(
qba
)−1

=
(
qba
)∗

(2.11)

The most important quaternion operation to understand is the product which shall be presented with the

operator ⊗ and shall follow the rules of the bibliography [4]. The product of a quaternion q by another

quaternion p is described as the following operation:

q⊗ p =

 qη · pη − qTε · pε
qη · pε + pη · qε − qε × pε

 (2.12)

The sequential rotation property of the rotation matrices also applies to the quaternions with it’s product.
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qca = qcb ⊗ qba (2.13)

For basic understanding of the work presented here the most useful rules of the quaternions have been

described here and detailed a little more in [Annex A] however a more broad approach of the quaternion

rules are described in the bibliography [6],[4] and [7].
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Chapter 3

Equations of Motion

Before starting to tackle the determination and control problem it is required to understand the physics

of the space vehicle motion and rotation. This will complete the satellite physics model and later allow

the accurately predict the system behaviour.

3.1 Environment Model

In order to accurately depict the satellite behaviour is necessary to describe the environment where he

is going to flight [8] [9].

3.1.1 Gravity

A satellite per definition orbits a planet, such a phenomenon occurs due to the existence and major in-

fluence of gravity. According to Newton’s law of Universal Gravitation the force a body exerts on another

will be proportional to the product of their masses and inversely proportional to square distance between

them. So the earth gravity would be written as:

F =
µ⊕ ·ms

|r|2
· er , er =

r

|r|
(3.1)

where F is the gravity force vector, µ⊕ is the Earth universal gravitation constant,ms is the satellite mass

and r is the position vector of the body written in ECI. This law interprets the bodies as point of mass and

although this law is accurate enough for most of the problems, in reality the Earth is not a perfect sphere

neither has a homogeneous composition. The planet has a deformation on the poles, which causes

a variation in the gravity force. In order to accurately depict the Earth deformation other models were

developed. The major perturbation, caused by the Earth oblateness is called J2 perturbation and can be

easily corrected by adding to Newton’s law a correction factor based on each axis coordinate. Though

it may seem enough for a LEO, a more accurate model is preferred, the most well know model is the

updated version of the Earth Gravitational Model written in 1996 (EGM96) which is the Earth Gravita-
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tional Model 2008 (EGM2008). This model uses Legendre Polynomials to describe the gravity potential

field as a function of the spherical coordinates. The accuracy of the model would depend on the order of

coefficients used. The Earth gravity force F⊕ is described as a function of the satellite’s ECEF position

coordinate rE .

F⊕ = f (rE)egm (3.2)

Earth is the planet the satellite will orbit. As every body with mass has a gravitational field and given

that are other celestial bodies in our solar system whose gravitational field have influence, the biggest

contributors being the Moon and the Sun whose gravity forces from the perspective of our satellite orbit

are classified as perturbations. The heterogeneous constitution verified with Earth does not pose a

problem with these bodies as they are too distant to be noticed. So both of these can be modelled with

Newton’s Universal Gravitation Law.

F� =
µ� ·ms

r2
s

· es (3.3a)

F	 =
µ	 ·mm

r2
m

· em (3.3b)

Where F�, is the Sun gravity force, µ� is the Sun gravitational constant, rs is the distance vector be-

tween the satellite and the Sun written in the ECI frame, es is the direction vector from the satellite to

the Sun written in ECI, F	, represents the moon gravity force, µ	 is the moon gravitational constant, rm

is the distance vector between the satellite and the Sun written in the ECI frame and em is the direction

vector from the satellite to the moon written in ECI.

As seen before the heterogeneous density can causes some disturbances and not only the Earth but

also the satellite own asymmetry can cause the disturbances. Let’s first introduce the concept of center

of gravity, which is the point where resultant gravity force would be applied. When this point is out of the

satellite center of mass it results in a torque around the of mass center.

Being m the mass of the satellite the produced torque by gravity gradient τg in the B frame is given by:

τ g = −µ⊕
∫

r× rB
r3
B

(3.4)

Where r is the distance of the mass particle to center of mass and rB is the distance of the mass particle

to the Earth center. Using J to represent the concept of inertia tensor, the torque can be expressed as:

τ g = − 3

(
µ⊕
r3
B

)
ô× J · ô , ô =

rB
|rB|

(3.5)
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3.1.2 Magnetic Field

There is no precise date for it’s discovery but Earth magnetic field is one of the most used features

for navigation. Although there are some different theories about how exactly the planet core generates

this field, even so the geomagnetic field models proposed throughout the years have proven to be very

accurate. The first order approach, treats the magnetic field a magnetic dipole with the North-South

axis 11o rotated from the spinning axis. Near the poles the field magnitude reaches 60000nT and lowers

until reaches it’s minimum near the equator for a magnitude around 30000nT . This rough approximation

allows to generate an immediate and simple model for the geomagnetic field.

e2

e3

θm

Figure 3.1: 2D diagram of Earth magnetic dipole field model with reference to the axis e2 and e3

However the moving inner core introduces irregularities and a slow change, t. This phenomena moti-

vated the development of a more exact model. Nowadays, the model that offers the most accurate results

is the International Geomagnetic Reference Field (IGRF) model, defining the field potential through a

series of Legendre functions [10].

B = −∇V (3.6a)

V (r, θ, φ) = a

k∑
n=1

(a
r

)n+1 n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (3.6b)

Where r, θ, φ are the spherical coordinates radius, latitude and longitude, a is the Earth radius, gmn , hmn

are the Gauss coefficients defined by IAGA (International Association of Geomagnetism and Aeronomy)

and Pmn (θ) is the Schmidt quasi-normalized Legendre polynomial. Using 3.6a and 3.6b the equation for
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the geomagnetic field in each spherical coordinate direction is:

Br =

k∑
n=1

(a
r

)n+2

(n+ 1)

n∑
m=0

(gmn cosmφ+ hmn sinmφ)Pmn (θ) (3.7a)

Bθ = −
k∑

n=1

(a
r

)n+2 n∑
m=0

(gmn cosmφ+ hmn sinmφ)
∂Pmn (θ)

∂θ
(3.7b)

Bφ = − 1

sin θ

k∑
n=1

(a
r

)n+2 n∑
m=0

m (−gmn sinmφ+ hmn cosmφ)Pmn (θ) (3.7c)

According to Lorenz Law every time a electric current is induced in a conductor it creates a magnetic

dipole. The satellite is an electric system and as such will have a resultant magnetic dipole which shall

react to earth dipole and try to align create a torque. This is know as residual magnetic torque τB and is

modelled through the following equation in the body frame:

τB = mr ×BB (3.8)

Where mr is the satellite residual magnetic dipole vector and the BB is the geomagnetic field vector

written in B. The residual magnetic dipole is a satellite characteristic that varies in time and is difficult to

measure therefore it will be modelled as a noise source, whose mean value will be based upon tested

satellites.

3.1.3 Atmosphere

The atmosphere is a thin layer of air surrounding our planet and generate the largest non-gravitational

perturbations for the LEO. The drag force the satellite sustains Fd in the ECI frame is a function of

the velocity the satellite moves in relative to the air and is modelled from the following fluid mechanics

equation:

Fd = − 1

2
· ρ · Cd ·Asat · |v|2 ·

[
RIE
] v

|v|
(3.9a)

v = vE + vw ≈ vE (3.9b)

Where ρ is the air density, Cd is the drag coefficient, Asat is the cross section area of the satellite, vE

is the satellite velocity in the ECEF frame and the vω is the velocity of the air in ECEF which can be

neglected when compared to the orbital velocity in the ECEF frame. The satellite drag coefficient is a

factor mostly determined by it’s geometry and the direction of the velocity vector in the body frame. The
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cross sectional area Asat is also related to the satellite geometry and the attitude in regard to the velocity

vector. From [11] the Cd of 1U cubesat is between 2.0 and 3.5 with a nominal value of 2.2 being the most

used for non-varying Cd analysis and a mean cross-section area of 0.01 m2. The air density depends

on the temperature, altitude, solar activity, position, among other characteristics. The accuracy of most

atmosphere models is low for high altitudes (> 100 km) but according to [1] the models approved by

COSPAR are the most adequate. In bibliography the air density ρ is written as a function of the height h:

ρ(h) = ρ0e
−h( kTmg ) = ρ0e

−( hH ) (3.10)

Where ρ0 is the density at reference height, T is the air temperature, k is Boltzman’s constant, m is the

air molecular weight, g the gravity acceleration and H is the scalar height. The scalar height H is a

empiric coefficient establish in model CIRA 72 according to the height.

h (km) 100 110 120 130 140 150 160 180 200 250 300 350 400

H (km) 6.15 8.06 11.6 16.1 20.6 24.6 26.3 33.2 38.5 46.9 52.5 56.4 59.4

Table 3.1: Scalar height reference values for different heights

Similarly to the gravity gradient origin, the resulting point where the aerodynamic force is virtually applied

is called center of pressure and as it’s constantly changing most of the time it doesn’t coincide with the

satellite center of mass. This distance will cause a torque which will rotate the satellite. From mechanics

the resulting drag torque τ d written in the body frame is described by the following equation:

τ d =
([
RIE
]
Fd
)
× rcp (3.11)

where rcp is the position vector of the center of pressure in the B frame. From previous works [[11]] and

[[12]] it is possible to see the distance between the center of pressure and the center of mass is around

1 cm. However the exact coordinates of the rcp in time are not a simple problem to be solved and require

an extensive aerodynamic study to create a realistic model. Instead, a rough approximation was used

to simulate the movement of the center of pressure in time under the assumption of a free body having

a natural equilibrium point where the drag is minimum and to where it will tend to.

τ d =
([
RIE
]
Fd
)
× rd0


cos (ωxt+ λ1)

cos (ωyt+ λ2)

cos (ωzt+ λ3)

 (3.12a)

where rd0 is the maximum distance of the center of pressure, ωx, ωy, ωz are the axial components of

the angular velocity ω written in the B. The coefficient λ is a random generated vector between 0o and
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360o with a 120o phase difference between coordinates representing the unknown vector position of the

center of pressure.

3.2 Orbital Motion

Having described the most important external forces, in the following chapter the satellite movement

around the Earth will be mathematically formulated following the information in [13]. According to New-

ton’s Second Law the sum of all the forces actuating a body are described by a resulting acceleration a

inversely proportional to the mass:

∑
F = m a (3.13)

As described before, the forces actuating over the satellite are of gravity and aerodynamic nature, re-

placing equations (3.2), (3.3a), (3.3b) and (3.9a) into the previous equation (3.13) holds:

m a = F⊕ + Fd + F� + F	

= f (rE)egm +
1

2
ρCdAsat |v| ·

([
RIE
]
V
)

+
µ� ·ms

r2
s

· es +
µ	 ·mm

r2
m

· em

(3.14)

Where the acceleration is written in the ECI frame and when integrated provides the variation of the

satellite velocity in ECI frame.

v(t) = v0 +

∫ t

0

a d t (3.15)

The coordinates of the satellite are generated integrating once again, using the equation (3.15) to

achieve the position:

r(t) = r0 +

∫ t

0

v(t) d t (3.16)

The initial values v0 and r0 are settled according to the Kepler parameters of the satellite’s orbit. The

expected motion of the satellite will be of an orbit, describing perturbed eclipses around the planet with

the orientation stetted by its orbital parameters.
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3.3 Angular Motion

This chapter will focus on the angular motion of the satellite, used to depict the satellite attitude kinemat-

ics. Starting with the Euler’s equation and defining the relation between the resulting torques and the

variation of angular momentum H in [1], as:

Ḣ =
∑

τ (3.17)

By definition the angular momentum around the center of mass is given by the product of the inertia

tensor J by the angular velocity written in B:

H = Jω (3.18)

For ease it’s preferred to use the body frame to express the satellite rotations, as such the satellite angu-

lar momentum derivative expressed using the angular rate w.r.t. the inertial frame (ECI) gives the Euler

equation used in satellite dynamics:

Jω̇ + (ω × Jω) =
∑

τ (3.19)

The sum of all torques is given by the environment models presented in the previous section 3.1 and the

S/C actuators.

∑
τ = τ c + τ g + τB + τ d (3.20a)

= τ c − 3

(
µ

r3
B

)
ô× J · ô + mr ×BB +

([
RIE
]
Fd
)
× rd0 cos (ωt+ λ) (3.20b)

Now it is possible to write the differential equation of the angular rate joining the two previous equations

(3.19) and (3.20a):

ω̇ = J−1 (τ c + τ g + τB + τ d − ω × Jω) (3.21)

To solve this equation is necessary to provide an initial condition identified as omega0.

ω = ω0 + J−1

∫
[τ c + τ g + τB + τ d − ω × Jω] dt (3.22)
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Next we need to integrate the motion into a attitude representative unit. This is where the Euler angles

reveal one more difficulty, the angle obtained from direct integration of the angular velocity through time

would be difficult to interpret, unless the rotation is restricted to one axis at a time. As establish in the

previous chapter 2.3 the attitude representation method chosen will be the quaternions. The quaternions

derivative can be related to the angular velocity pure quaternion using the equation:

q̇ =
1

2
qW ⊗ q (3.23)

=
1

2
Ω (ω) · q (3.24)

Where Ω is a transformation from the vector to quaternion multiplication matrix based on the pure quater-

nion form qW computed fixing the first coordinate to zero.

qW =

0

ω

 (3.25)

With every quaternion operation is necessary to check if the unitary quaternion norm is being uphold

and through this method is possible to guarantee it. Having defined the quaternion derivative the direct

integration describes the quaternion evolution in time and consequently the attitude motion.

q = q0 +

∫
q̇ dt (3.26)

3.3.1 Equation Summary

a = m−1
[
f (rE)egm + 1

2 ρCdAsat |v| ·
([
RIE
]
V
)

+ µ�·ms
r2s
· es + µ	·mm

r2m
· em

]
v = v0 +

∫
a dt

r = r0 +
∫
v dt

ω = ω0 + J−1
∫

[τ t − ω × Jω] dt

τ t = τ c − 3
(
µ
r3B

)
ô× J · ô + mr ×BB +

([
RIE
]
Fd
)
× rd0 cos (ωt+ λ)

q̇ = 1
2 Ω (ω) q

q = q0 +
∫
q̇ dt

Table 3.2: Summary of the equations of motion
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Chapter 4

Satellite Model

The ISTsat-1 is a 1U1 cubesat satellite comprising 5 subsystems: an Onboard Computer (OBC), Com-

munication Data Handler (COM), a telecommunication system (TTC), an Electric Power System (EPS)

and a payload system.

Figure 4.1: ISTsat-1 CAD assembly exploded view with the subsytems mockups. [Taken from ISTsat-1

engineering documentation]

1The industry standard cubesat unit of measurement was establish in [14] as a 10 cm cube with 1.33 kg.
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4.1 Inertia Matrix

To be able to understand the satellite dynamic response, one important feature is how the satellite mass

is geometrically distributed. Dynamically this is known as Momentum of Inertia and fundamentally states

the more sparse a body mass is the more difficult is to rotate it. This information is represented in a ma-

trix J mentioned in previous chapters. J is a posive-definite matrix and if defined around the center of

mass it is computed through the following equation:

[J ] =

∫∫∫
r2 dm (4.1)

The satellite geometry is very close to a cube which allows to compare it to a 1 kg cube of uniform mass

whose diagonal inertia matrix [J ]cube computation can be easily made from [15].

[J ]cube =
s2

6
I3×3 = 1.66× 10−3I3×3 (kgm2) (4.2)

From the CAD software used to model the satellite systems, it is possible to obtain an estimation of the

satellite inertia matrix around the center of mass and check how much it differs from the homogeneous

situation. The CAD model includes the mass properties of each component resulting in a heterogeneous

mass distribution and non-zero cross-axis components in inertia matrix estimation.


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 =


1.6194 −0.0174 0.0113

−0.0174 1.7603 0.0036

0.0113 0.0036 1.8415

× 10−3 kgm2 (4.3)

After de-tumbling the satellite will deploy the antennas which are 0.5m length steel rods that extend from

the top face to each of the sides significantly changing the inertia matrix.

[J ]deployed =


1.6715 −0.0406 0.0118

−0.0406 2.1326 0.0036

0.0118 0.0036 2.2369

× 10−3 kgm2 (4.4)

4.2 Hardware

The ADCS is design to be integrated into the OBC, sharing the same hardware to accomplish its distinct

functions. As depicted in [16], at the core of the OBC module is a MSP430F5438A, a low power 16-bit

MicroController Unit (MCU) by Texas Instruments, where the ADCS algorithms and data will be com-

puted. This specific MCU has 256 kB of flash memory and 16 kB of RAM and the clock frequency goes
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up to 25 MHz. This is not the most powerful MCU although it is well known for it’s low power consumption

which was the main reason for it’s choice. Besides the MCU, two more sets of devices are needed for the

ADCS to be able to perform its duties. The first are the sensors, responsible for the digital translation of

specific phenomenons. The second set are the actuators which are the satellite physical manifestation

of control. The OBC system was design to have access to measurements from a gyroscope, Sun sensor

and magnetometer. The most relevant operational requirement for this mission is the control over the

satellite rotation which focused the choice on torque producing actuators like the chosen magnetorquers.

4.3 Inertial Sensors

4.3.1 Gyroscope

A gyroscope is an inertial sensor that measures an angular displacement in an inertial reference frame.

Among the gyro sensors there is a specific group called the rate-gyros, which estimate the angular

velocity by dividing the measured angular displacement over a period of time. This information can

help understand the S/C dynamic state better and can even be used together with other attitude sen-

sors to complement their information. There are many different technologies used for the gyroscopes

like LASER ring, fiber-optic or nuclear-based although offering great performance these options require

much more volume than a MEMS solution [17][18]. The size and mass being highly restricted are of

most importance in satellite systems design because it impacts severely the launch cost. For this rea-

son the most common option in cubesats is to use MEMS. During the design of the OBC board the

gyroscope chosen was integrated into an Inertial Measurement Unit (IMU) manufactured by TDK In-

vensense designated by MPU9050 [19]. This 9-axes unit was design for low power applications with

heading requirements such as smart-phones, motion-based controllers and and 3D remote controls

among others. Another 5 gyroscopes devices are available, one in each solar panel, although they are

not expected to be used to enforce redundancy it is wise to list him and check if it can be used as

substitute to the main gyroscope. Unfortunately the manufacturer does not list a complete performance

report in the specification sheet to enable a fair comparison with the main gyro. As stated in [20], a high

accuracy maneuvering requires a higher fidelity gyroscope model and for ISTsat-1 this would be useful.

As such the gyroscope reading ω̂ as the real value ω multiplied by a misalignment and a scaling matrix

[Gg], added by a bias βg and noise factor narw.

ω̂ = [Gg]ω + βg + narw (4.5)

β̇g = nrrw (4.6)

The noise factor narw is a white noise representing the sensor perturbation in reading the values known

as Angle Random Walk. The bias is the sensor output when the input is zero and in rate-gyros this
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Characteristic Sensor Sensor

Model MPU-9250 Solar Panel

Type Rate gyro Rate gyro

ADC 16 bits -

Sampling 4− 8000Hz -

Scale2 250 o/s 80 o/s

Sensitivity 131 LSB
o/s 54.6 LSB

o/s

∆Sensitivity (−40oC to +85oC) 4 % -

Linearity 0.1 % -

Noise RMS 0.1 o/s -

Rate Noise PSD 0.01
o/s√
Hz

-

LowPass Filter 5 − 250Hz -

Table 4.1: MPU9250 and solar panel specifications [19]

property isn’t constant each time the sensor is turned on nor does it remain constant through time. The

latter is a phenomenon known as gyro drift or rate random walk and it’s change can be interpreted also

as white noise.

The processes nrrw and narw are generally defined by their spectral densities which subsequently are

computed through their Allen Variation σrrw and σarw respectively.

E
[
narw nTarw

]
= σ2

arw I3×3 (4.7a)

E
[
nrrw nTrrw

]
= σ2

rrw I3×3 (4.7b)

While higher accuracy is desired there is a trade-off to be made in order to save some computational

power to OBC, instead of computing the alignments and scaling factors on flight they will be calculated

on ground through tests.

4.4 Attitude Sensors

For attitude determination, reference measurements are needed to compare the sensor readings to, so

in space there a few options to use as reference. The most usual references relate to Earth and Sun

features and to capture such features the most used sensors are Sun sensors, horizon sensors, mag-

netometers and star trackers [1]. The value these sensors truly measure can be computed through high

accuracy empirical models asserting the devices as good attitude sensors. Normally the star trackers

are high cost devices whose size is an exclusion cause for low budget small satellites. The most ade-
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quate sensors for cubesats are the magnetometers, the Sun sensors and horizon sensors. With that in

mind it was chosen to use a magnetometer and a coarse Sun sensor for the attitude sensors.

4.4.1 Sun Sensors

There many types of solar sensors divided according to how they detect the sunlight direction. Due to

its optic needs the Sun sensors usually aren’t small enough for the cubesats to accommodate. In order

to decrease the volume and financial costs the choice was to use a coarse Sun sensor system. Even

among COTS the volume of most coarse Sun sensors aren’t viable in a 1U cubesat as it would imply

the removal of one solar panel per face. Searching for another solution led to the challenge of using an

array of photo-diodes as solar sensors. This was a solution already included into the products of some

solar panels manufacturers. A photo-diode is a semiconductor device that in the presence of light allows

to change their junction polarity and conduct current [21]. The photo-diode design was then added

as a requirement for choosing the solar panel and after weighting all the parameters it was chosen to

use EnduroSat solution. Unfortunately the sensor specification the manufacturer provided is not much

detailed, just giving information about the spectrum bandwidth and half-angle sensitivity.

Name Solar Panel

Type Photo diode

Half-Sensitivity 60o

Spectral bandwidth 430− 610nm

Table 4.2: Endurosat solar sensor specifications [22]

According to the model in [23] the current i measured in a photodiode is a cosine function of the incident

angle.

i = i0 cosα+ nss (4.8)

Where α is the angle between the photodiode normal and the light direction, i0 is the maximum current

the diode allows for that wavelength and nss is measurement noise. The incident angle α is a product of

the photodiode i normal surface n̄i in B with the Sun position vector S read in B which can be approxi-

mated to the Sun position in frame E rotated to B and shall be identified as SB.

α = cos−1

(
SB · n̄i
|SB|

)
, |n̄i| = 1 (4.9)

This equation represents the unobstructed model however the line of sight to the sun is obstructed by
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the Earth while in eclipse. The identification of an eclipse could be made using the angle ψ between the

Sun and earth written in B and the limit angle of visibility ψecl.

α =

cos−1
(

SB · n̄i
|SB|

)
→ ψ < ψecl

90 → ψ > ψecl

(4.10)

The angular displacement between the vectors SB and rB is given by:

ψ = cos−1

(
r · SB
|r| · |SB|

)
(4.11)

The limit region where the satellite is in eclipse is determined by the angle ψecl which is a sinusoidal

function of the ratio between orbit radius and Earth radius.

ψecl = sin−1

(
R⊕

R⊕ + h

)
(4.12)

Where h represents the altitude of the satellite from the surface Earth. And the angle ψ is given by the

angle between the Earth and Sun vector written in B.

ψ = cos−1

(
SB · rB
|SB| · |rB|

)
(4.13)

The transformation from current to Sun position vector written in the B is given by writing the sum of the

opposites sides (same axis) measurements into the corresponding B axis.

ŜB =
1

i0


i+x − i−x

i+y − i−y

i+z − i−z

 (4.14)

There is one important note to make about sunlight reflecting on the Earth surface introducing an error

into the sensor. The satellite could include an albedo model as in [24], instead a simpler approach was

chosen by setting the minimum current detected by the sensor to around 34% of the maximum current a

little more than the Earth albedo 30% and imposed a limit in each photodiode FOV to 70o.

4.4.2 Magnetometers

The magnetometers are sensors that measure the intensity of the magnetic field in each of their own

coordinate frame orthogonal axis. The three measurements reveal the direction and magnitude of the

magnetic field in its body reference frame. These readings will allow the spacecraft to establish attitude

relations with the reference values generates through the IGRF model according to the S/C position in E

28



frame. ISTsat has two of these sensors available, one in the IMU already mentioned and second in a dif-

ferent specialized IC manufactured by Honeywell, the HMC5983. The latter has a superior performance,

much accurate readings and for that reason will be the main sensor from each most measurements will

be read until a problem is diagnosed.

Characteristic Sensor Sensor

Name HMC5983 MPU-9250

Type 3 axis 3 axis

ADC 12bits 14bits

Sample Rate 0.75− 220Hz -

Range ±1G ±48G

Sensitivity 1370 LSb
G 171 LSb

G

Linearity 0.1% -

RMS Noise 2mG -

Table 4.3: HMC5983 and MPU9250 sensor specifications [25] [19]

The vector read by the magnetometer is modeled as the true magnetic field vector multiplied by a mis-

alignment and scaling matrices, summed to a bias βB and in the end a noise component nB is added.

B̂ = [GB ]B + βB + nB (4.15)

The matrices of misalignment and scaling are multiplied sequentially and therefore can be joined to-

gether into the matrix [GB ]. The noise component is modeled as Gaussian white noise with a standard

deviation σB furthermore in table [4.3] the value of σB for HMC5983 is specified as 200nT .

E
[
nB nTB

]
= σ2

B I3×3 (4.16)

4.5 Magnetorquers

As important as the sensors are, the actuators are also of major importance to provide the necessary

control actions. The actuators can be divided into two types, the attitude actuators and the orbital

actuators. The result produced from the first type is predominantly a torque vector eventually changing
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the attitude and the second type generates a force vector mostly used to perform corrections or change

the orbit. The orbit corrections are necessary to extend the period of a satellite in a specific orbit or

to change into a specific orbit. Neither of these types of corrections are necessary as the ISTsat-1

estimated lifetime is enough to accomplish the objectives established. Therefore it only needs to control

the attitude. There are two other categories in which the attitude actuators can be divided the passive

and active upon the possibility to change the actuator output. The passive solutions are a great option to

save some power as most don’t require energy supply to work although as a trade-off the attitude control

won’t be as stable, precise or flexible as the solutions allowed by active actuators. While in normal mode

the satellite will have to be pointing NADIR which reduces the options normally used in cubesats to the

Gravity Boom and two active: the Magnetorquers and Reactions Wheel.

Actuator Power Accuracy Volume Mass

Gravity Boom Zero Low High High

Magnetorequer Low High Low Low

Reaction Wheel High Very High High High

Table 4.4: ISTsat-1 possible actuators comparison

Analysing table 4.4 a few considerations need to be made, the first is that the satellite is small and

the accommodation of more than 1 reaction wheel is difficult. The same can be said about the Grav-

ity Boom considering that when it is not deployed it has to be accommodated inside the 1U structure.

Furthermore, from previous cubesat missions team reports the gravity boom needs to be very carefully

deployed otherwise when release the satellite may end up pointing in the opposite direction. A further

disadvantage of the gravity boom is also the interference with the ADS-B path antenna located in the -Z

surface of the satellite. For these reasons the most appealing solution was to use magnetorquers, the

possiblity of integrate them into the solar panels assembly represents a big volume and mass advantage.

The disadvantage of this choice is the power consumption leading the design of the controller to focus

in reducing power consumption when possible, even so it will not be as high as the reaction wheels. The

solar panels sold by Endurosat have an optional feature that may include a printed coil in the back of the

panel to work as magnetorquers. To control 3 axes, 3 of the 5 solar panels needed this coil option and

they are to be placed on +X, +Y and −Z faces.

30



Manufacturer EnduroSat

Voltage 3.3V

DC Resitance 42 Ω

Current 78mA

Magnetic Dipole 131mAm2

Table 4.5: Endurosat solar panel magnetorquer specification

The magnetoquers are a set of electromagnetic coils that generate a magnetic dipole when are current

flows through them and this magnetic dipole will then react with the Earth Magnetic Field and produce a

torque. The interaction between two magnetic dipoles is already described in equation [3.8], the same

equation will describe the torque τc created by the magnetorquers magnetic dipole mc.

τ c = mc ×BB (4.17)

The magnetic dipole can be approximated to a linear function of the current passing into the coils but

is usually easier to control a circuit through voltage. Assuming a stationary case, the voltage will be

directly proportional to the current and then it will be possible to write the magnetic dipole as a function

of the voltage output Vc.

mc = mm

(
Vc
Vmax

)
(4.18)

Where Vmax is the voltage necessary to provide the specified maximum magnetic dipole mm. For fur-

ther simplification the instead of a variable voltage output the OBC shall provide a PWM signal whose

duty-cycle is calculated as ratio between the desired output voltage and the maximum voltage.

D =
Vc
Vmax

(4.19)

The resulting voltage averaged over the actuation time is the same as the desired voltage however the

averaged torque generated could be different as the torque depends on the magnetic field which is time-

varying.

1

T

∫ t0+T

t0

(mm ) ×B(t) dt 6= 1

T

∫ t0+T

t0

(
mm Vc
Vmax

)
×B(t)dt (4.20)
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Where is a square function of dutycycle D. With this implementation the precision of the resulting

magnetic dipole is defined based upon the dutycycle precision. Although for very small duty-cycle val-

ues the pulse is too quick and the driver may not be able to maintain a perfectly timed square wave. Also

to avoid coils frequency problems a lower duty cycle limit as imposed which corresponds to pulse widths

smaller than 0.1ms.

On other hand, there is also a requirement to ensure the ADCS doesn’t take magnetometer readings

when the magnetoquers are being induced and sufficient time is provided so that the magnetometers

can take unbiased readings. This problem was solved by limiting the duty-cycle to smaller value than

100% allowing at least a few milliseconds for the readings.

These limiting values will depend on the control sampling frequency which will be chosen in a later chap-

ter but for safety reasons the duty-cycle was limited from 0.1% to 80% until the frequency is chosen.

0.0001 ≤ D ≤ 0.8 (4.21)
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Chapter 5

Attitude Determination Algorithms

In order to design the attitude and control system the previous chapters were essential to establish the

base for developing the algorithms required. So in this chapter the attitude determination problem will

be formally presented and recalling the satellite has a low power budget simple algorithms will be pre-

sented as possible solutions to satisfy the low computational power requirements. The solutions for the

attitude problem corresponds to finding the rotation matrix with a positive determinant which for any set

of measurements transform the sensor data into the reference vectors.

A ri = bi , for i = 1, 2 (5.1)

In ISTsat-1 case, the number of measurements will be two so i can only be either 1 or 2, for the magne-

tometer can give a measurements in any normal condition but the sun sensor may not be able to due to

eclipse conditions. The first two approaches presented in this chapter are the TRIAD and Wahba, both

leading to deterministic solutions with simple and fast formulation. Then some more complex algorithms

integrating the dynamic information will be presented in order to increase the system robustness and

performance while still trying to maintain the low power requirement. The major advantage of most dy-

namic algorithms is the capability of predicting a vector evolution using only gyroscope measurements,

which is quite useful when is not possible to register one measurement vector as it happens with the

sun sensor in eclipse. The first dynamic algorithm presented here will be the EQUEST which is a simple

and quick weighted quaternion combination solution. The second will be the celebrated Kalman Filter

with a small variation in implementation for increased speed. Lastly a sensor fusion algorithm known as

Complementary Filter which even though being simple reports showed good performance.

5.1 TRIAD

One of the first algorithms to solve the attitude problem is known for TRIAD or ”TRIAxial Determination

algorithm”, developed by Harold Black [26]. This algorithm uses only 2 non-collinear measurements

vectors and their respective references in the reference frame to provide a solution. The algorithm logic
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consist in creating a triaxial orthogonal frame with the measurements and use its properties to find the

attitude matrix. The measurements will be used to form a orthonormal triaxial space with the base vec-

tors wk and the same will be done with the reference vectors creating the base vectors vk. As they are

created using the same linear operations the attitude equation is applicable.

ÂTRIAD [v1 v2 v3] = [w1 w2 w3] (5.2)

To find A the solution could be simply given by the multiplication of matrix w by the inverse of v. Now as

both matrices are orthonormal instead of using long methods to compute the inverse of a 3 by 3 matrix

the inverse could be easily computed by transposing it.

ÂTRIAD = [w1 w2 w3] · [v1 v2 v3]T (5.3)

So the important step will be to create the vectors wk and vk in order to form an orthonormal group using

the measurements vectors bi and ri. The first base vector will be equal to the first measurement vector.

In order to achieve better results the vector b1 should provide more accurate measurements than b2, as

the algorithm is more sensible to the error associated to measurement vector 1.

w1 = b1 (5.4)

The second vector w2 is the result of the cross product of b1 and b2.

w2 = b1 × b2 (5.5)

Lastly the third vector w3 will be orthogonal to the other two, a cross product will also be used to achieve

this.

w3 = w1 ×w2 (5.6)

The matrix of vectors [V ] is also built this way but using the reference vectors instead.

v1 = r1 (5.7a)

v2 = v1 × r2 (5.7b)

v3 = v1 × v2 (5.7c)
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Now that the orthonormal properties are guaranteed the attitude equation can be rewritten into:

ÂTRIAD = w1 v
T
1 + w2 v

T
2 + w3 v

T
3 (5.8)

Before trying out the algorithm in the simulator it is possible to analytically demonstrate its expected per-

formance. The first assumption to be considered will be an expected value equal to zero. Assuming the

error are random errors with a zero mean value their description will be made through their respective

covariance. The zero mean of the observation and reference vectors does also lead to a zero mean

error in the attitude matrix.

〈4A〉 = 〈A · Â〉 = 0 (5.9)

As there is no correlation between the reference and measurement vectors the total covariance matrix

is the sum of the contributions from each set of vectors.

0 = 〈4b1 4 bT2 〉 = 〈4r1 4 rT2 〉 (5.10a)

P = Pb + APrA
T (5.10b)

Then using the results from [27] the covariance matrix is written in the following form:

P = σ2
1(I − v3v

T
3 + v1v

T
1 − v2v

T
2 ) +

(
σ2

1 + σ2
2

)
|r1 × r2|2

(
I − v1v

T
1

)
+ σ2

1

(r1 · r2)

|r1 × r2|
(
v1v

T
3 + v3v

T
1

) (5.11)

Where the standard deviations σ1 and σ2 are the measurement and reference vectors combined.

σ2
1 = σ2

r1 + σ2
b1 (5.12a)

σ2
2 = σ2

r2 + σ2
b2 (5.12b)

The usual attitude error parametrization through small angles approximation allow for an even more

simplified equation as described in [5] but as that is only valid for small angles the equation will not be

used until the errors are proven to be small enough.

Finally the error associated with the acquisition of the reference vectors will be ignored for now until the
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error of the position algorithm is known. The error will regard only the noise in the measurement vectors

which were characterized in previous report allowing to achieve numeric results of the covariance matrix

for this method.

5.2 Wahba’s Problem

In attitude determination one common formulation of the attitude problem was posed by Grace Wahba

lead to many solutions [28]. This forms logic is to find the matrix which minimizes the cost function which

is similar to least square minimum problem:

L(A) =
1

2

n∑
k=1

ak ||bk − Ark||2 (5.13)

Where ak are the relative weights associated with the sensor and n the number of measurements in

these particular case will be equal to 2. While using direction vectors the magnitude of vectors bk and

rk will be unitary. This allows to transform the problem into a simpler equation:

||bk −Ark||2 = ||bk||2 − 2 (bk ·Ark) + ||rk||2 (5.14a)

= 2 − 2 (bk ·Ark) (5.14b)

To simplify even more the products of the vectors and weight were written in matrix B.

B =

n∑
k=1

ak rk · bTk (5.15)

These changes allow to write the cost function in the following form:

L(A) = λ0 − tr
(
ABT

)
(5.16a)

λ0 =

n∑
k=1

ak (5.16b)

Now the problem is inverted and finding the minimum cost is to find the maximum of
(
ABT

)
trace.

Throughout the years different algorithms were developed to solve Wahba’s problem. Some of the more

known are: q-Method, QUEST, SVD and FOAM.
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5.2.1 Davenport’s q-Method

Davenport developed one of the first solutions to Wahba’s problem using quaternions [28]. He proved

the matrix ABT trace is related to the attitude quaternion through a 3× 3 gain matrix K.

tr
(
ABT

)
= qT K q (5.17)

Where the matrices K and z are given by:

K =

B +BT − tr(B) · I z

zT tr(B)

 (5.18a)

z =

n∑
k=1

ak (bk × rk) (5.18b)

Manipulating q in the equation is possible to come up to the eigenvector-eigenvalue equation which has

n solutions, in this case being n = 4 there will be 4 possible solutions vectors. Lastly Davenport proved

the corrected solution of q to the attitude problem was associated with the highest eigenvalue of the

matrix K.

Kq̂ = λmaxq̂ (5.19a)

|q̂| = 1 (5.19b)

Using the highest eigenvalue of K for λmax the original cost equation turns to:

J(A) = λ0 − λmax (5.20)

Davenport transformed Wahba’s problem into a eigenvector problem, so in order to solve the attitude

problem it’s only necessary to compute the eigenvectors of K and use the one associated to the highest

eigenvalue. One problem of this method is revealed when the two highest eigenvalue are not distinct

resulting in a non-unique solution even so, this formulation is one of the best to solve Wahba’s problem.

5.2.2 QUEST

Using the results of Davenport’s q-method, Malcolm Shuster proposed the QUaternion ESTimator algo-

rithm [29], abbreviated to QUEST, in order to avoid the complex computations to obtain the eigenvectors.

To avoid analytically compute λmax Shuster first wrote the λ polynomial equation and then used the well

known numerical method, Newton-Rapshon, to rapidly achieve an optimal λ.

ψ(λ) = det(λI4×4 − K) (5.21)
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To ease the use of Newton-Raphson the equation was rewritten to:

ψ(λ) = λ4 − (a+ b)λ2 − cλ + (ab+ cs− d) (5.22)

where

a = tr(B)2 − tr(adjB +BT ) (5.23)

b = tr(B)2 − ztz (5.24)

c = tr(B +BT ) + zT tr(B +BT )z (5.25)

d = zT tr(B +BT )2z (5.26)

Then the best starting point λ0 was shown to be the sum of the sensor weights as the results achieved

by Davenport’s algorithm proven them to be very close to λmax.

λmax ≈ λ0 =

n∑
i=1

ai (5.27)

Usually one iteration of Newton-Raphson is sufficient to provide accurate results.

Once the optimal eigenvalue has been calculated, it is necessary to relate it to the respective eigenvec-

tor. The easier method is to use the following equations:

q̂ =
1√

g2 + γ2

g
γ

 (5.28)

Where the g and γ are given by the equations:

g =
[
αI + (λ− tr(B))S + S2

]
z (5.29)

γ = α [λ+ tr(B)] − det(S) (5.30)

α = λ2 − tr(B)2 + tr(adj(S)) (5.31)

5.2.3 SVD

Another of the first solutions to Wahba’s problem was the Singular Value Decomposition or SVD which

uses matrices operations to solve the problem [30]. The guideline to this method is to decompose the B

matrix into a product of a matrices U ,S and V , where U and V are two orthogonal matrices. Then those

matrices can be used to represent the attitude matrix.

B = USV T (5.32)
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Where S is a diagonal matrix with the values [s1, s2, s3]. And it was demonstrated that the matrix A was

given by:

Â = U diag ([1 1 det(U) · det(V )]) V T (5.33)

The λmax can be calculated through the diagonal of the matrix S and the determinants of U and V .

λmax = s1 + s2 + det(U)det(V ) (5.34)

This method also has a non-unique solution when the two highest eigenvalues aren’t distinct.

5.2.4 FOAM with two Observations

Another matrix approach is the Fast Optimal Attitude Matrix (FOAM) presented in [31] developed as an

alternative to SVD method in order to avoid the attitude profile matrix, B, decomposition operations.

From the results of SVD, it is possible to write the following statements.

det(B) = s1 s2 s
′
3 (5.35)

||B||2F = s2
1 + s2

2 + (s′3)
2 (5.36)

adj(BT ) = U+diag([s2s
′
3 s′3s1 s1s2])V T+ (5.37)

BBTB = U+diag([s2
1 s2

2 s′
2
3])V T+ (5.38)

Where U+ V+ are given by:

U+ = U diag([1 1 det(U)]) (5.39)

V+ = V diag([1 1 det(V )]) (5.40)

With this the optimal attitude matrix could be written as:

Â =
(λ2
max + ||B||2F )B + 2λmaxadj(B

T )− 2BBTB

λmax(λ2
max − ||B||

2
F )− 2det(B)

(5.41)

The polynomial characteristic equation as function of λ is then given by:

ψ(λ) = (λ2 − ||B||2F )2 − 8λdet(B)− 4||adj(B||2F (5.42)

This algorithm was developed for multiple observation vector, being these equations the generic repre-

sentation so later another development was presented regarding the specific solution for two observation
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vectors which simplify the equations with the following results:

det(B) = 0 (5.43a)

BBT = a2
1b1b

T
1 + a2

2b2b
T
2 + a1a2(r1 · r2)(b1b

T
2 + b2b1) (5.43b)

||B||2F = a2
1 + a2

2 + 2a1a2(r1 · r2)(b1 · b2) (5.43c)

adj(BT ) = a1a2(b1 × b2)(r1 × r2)T (5.43d)

||adj(B)||F = a1a2||r1 × r2||b1 × b2|| (5.43e)

These simplifications allow for more simple solution of highest eigenvalue and the optimal attitude matrix.

λmax =

√
||B||2F + ||r1 × r2||b1 × b2|| (5.44)

Â =

(
a1

λmax

)(
b1r

T
1 + (b1 × b×)(r1 × r×)T

)
+

(
a2

λmax

)(
b2r

T
2 + (b2 × b×)(r2 × r×)T

)
+ b×r×

(5.45)

As it can be seen this solution is similar to the TRIAD method and actually is the same when a2 = 0.

5.3 Enhanced QUEST

The first dynamic algorithm to be presented in this thesis is the Enhanced Quaternion Estimator [32]

which is a simple and quick approach to solve the attitude determination while in eclipse. The method

uses an estimator based on the gyro readings to generate a quaternion estimation q̃ and fuses it with

the quaternion qQUEST obtained through QUEST. Is also possible to take the same approach but with the

output of the TRIAD algorithm instead.

q̂ = (1 − β) · q̃ + β · qQUEST (5.46)

Where q̂ is the resulting quaternion while β is the varying weight that indicates the confidence of the

TRIAD/QUEST output quaternion. The weights are dynamically computed in order to reduce the effect

of the indeterminate case caused by the co-linearity of the reference vectors.

β =
(
1 − |r1 · r2|2

)
β0 (5.47)

40



The quaternion estimator is computed using the readings of the gyroscope to linearly propagate the last

attitude quaternion reading.

q̃k = Φqk(ω̃k) q̂k−1 (5.48)

Where Φqk is a 2nd order quaternion update matrix written in function of the angular rate, for more

information see annex A.4. While in eclipse only the estimator component will be available (QUEST

contribution will be disabled) and β will be set to zero in order to fully use the estimator component.

Eclipse =⇒ β = 0 =⇒ q̂k = (1 − β) · q̃k (5.49)

5.4 Extended Kalman Filter

To address the problem of attitude estimation one of the most popular solutions was presented in 1960

by R.E Kalman [33]. This solution is a two step filter algorithm that uses the observations and their known

noise statistical parameters to predict the system behaviour for an underlying linear system. From the

original filter Kalman proposed many variations appeared throughout the years and a particular one

is well know for it’s ability to deal with non-linear systems, the Extended Kalman Filter. This variant

linearises the system around a state and uses Jacobian matrices in the dynamic model to predict the

evolution from the linearised state and is denoted as Extended Kalman [34]. The discrete system is

described with the following equation:

ẋk = f(xk,uk,wk) (5.50)

where u represent the control input and tk the time at the kth step and wk the noise associated to the

dynamic motion. The system is then linearised around the point x̂ using the partial derivatives of the

transition function f with respect to x, u and w. The Taylor series expansion is used to simplify its

computation and representation [34].

∆ẋk = F∆xk + B∆uk + G∆wk (5.51)
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where the partial derivatives F, B and G are the following:

F =
∂f(xk,uk,wk)

∂xk

∣∣∣∣
xk = x̂

(5.52a)

B =
∂f(xk,uk,wk)

∂uk

∣∣∣∣
xk = x̂

(5.52b)

G =
∂f(xk,uk,wk)

∂wk

∣∣∣∣
xk = x̂

(5.52c)

These equations describe the system behaviour but to increase its accuracy is also necessary to include

observers model to compare the expected behaviour to and eventually correct it. The observation model

in non-linear systems should also be linearised with a similar process in which the observation vector is

written through the sensibility function h:

yk = hk (x̂k , rk) (5.53)

The system is then linearised so that the observation vector variation is also represented with the local

derivative H known as the sensibility matrix.

∆yk = H ·∆xk (5.54a)

H =
∂h(xk, rk)

∂xk
(5.54b)

5.4.1 MEKF State Equations

The Multiplicative Extended Kalman Filter [5][35] is one of the Kalman Filter variations developed in

1969 for optimal attitude estimation. The concept of the algorithm underlies in the representation of

the estimation error with a quaternion which is a result from the quaternion multiplication between the

propagated and estimated quaternions. As previously introduced, this quaternion error represents the

rotation from the predicted frame to the corrected body frame, i.e.

q = ∂q ⊗ q̂ (5.55)
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From [5] when the representing small rotations the relation between the quaternion error axis part and

the rotation vector error axis can be simplified to the following equation:

∂q ∼ 1

2

 2

∂ϑ

 (5.56)

The vector ∂ϑ shall be used as the three first state coordinates with the advantage of having 1 less

coordinate than the quaternion representation, thus reducing the computation effort. To correct the gyro

drift, a common solution is to include the bias derivative β̇ in the state vector to later integrate it. From

the gyroscope model discussed in the previous chapter the discrete gyro measurements are as follows:

ω̂k = ωk + βg|k + nARW |k (5.57)

β̇k = nrrw|k (5.58)

So the full error state vector the algorithm will be updating is:

∆x =

 ∂ϑ

∆βg

 (5.59)

The angular error derivate ∂̇ϑ can be written through the quaternion derivative and the previous definition

of ϑ as explained in [36].

∂̇ϑ = −ω × ∂ϑ − ∆βg − narw (5.60)

While the derivate of the second component of the state vector, the bias deviation error, written as ˙∆βg

is given by equation 5.58. The estimated derivative is zero which leaves bias residual error equal to the

modelled derivate:

˙∆βg = narw (5.61)

These equations can now be written into state transition functions around the linearised point as defined

in 5.52a:

Fk =

I3×3 −∆t [ωk−1]× I3×3∆t

03×3 I3×3

 (5.62)
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For the state modelling to be complete the last step is to linearise the noise model with it’s partial deriva-

tive Gk. The noise vector wk can be divided into two components, one more related to the first state

vector, xk, through the instantaneous angular measurement error δϑ and the other more related to the

gyro bias instability and drift which shall reflect into the other state vector ∆β.

wk =

narw
nrrw


k

(5.63)

Using this formulation with the state vector description made with 5.60 and 5.61 the Jacobian matrix G

can now be represented as the following:

Gk =

−I3×3∆t 03×3

03×3 I3×3∆t

 (5.64)

As stated in 4.3.1 both noise vectors are assumed to be uncorrelated and defined as white Gaussian

noise distributions which standard deviation is defined as the σarw and σrrw.

〈narwnrrw〉 = 0 (5.65)

〈nrrwnrrw〉 = σ2
arwI3×3 (5.66)

〈narwnarw〉 = σ2
arwI3×3 (5.67)

This would also mean that the process covariance is simplified into a diagonal matrix representation.

Wk = 〈wkw
T
k 〉 =

σ2
arwI3×3 03×3

03×3 σ2
rrwI3×3

 (5.68)

5.4.2 MEKF Update Equations

The filter makes predictions about the states until it receives measurements updates upon which it cor-

rects those predictions. In this section it is illustrated how the algorithm uses those informations to

update it’s predictions, starting by defining the Kalman gain K that corrects each prediction step. It is

necessary to compute the gain before each prediction to continuously compensate the estimations using

the covariance matrix. The gain K of a kth instant is given by the following equation:

Kk = P−k HT
k

[
Hk P

−
k HT

k + R
]−1

(5.69)
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Where P−k is the covariance matrix estimation from the previous state, Hk is the derivative of the sen-

sibility matrix and R is the measurement weight matrix which shall vary according to the observations

used to update the state as it will be discussed further on section 5.4.3. Upon computing the Kalman

gain, it follows the update of the state and covariance predictions which are computed using the previous

state and covariance.

x̂k = x̂−k + Kk [yk − Hk x̂k] = x̂−k + Kk zk

Pk = [I − Kk Hk] P−k [I − Kk Hk]
T

+ Kk RK
T
k

(5.70)

Where the x̂k and P−k represent respectively the previous state estimation and covariance, zk represent

the measurement residual error which is explained in the following section.

5.4.3 MEKF Observation Model

While building the observation model two possibilities could be considered regarding which measure-

ments should be taken into consideration. The first approach would use the raw sensors data and com-

pare them to the estimated reference values to generate the estimated angular error. Another option is

an extension of the previous work in static algorithms, using them to provide a quaternion measurement

which will be converted into an angular error when compared to the filter estimate. There obvious ad-

vantages in using a quaternion input which ultimately can be resumed in computational speed. However

using the raw sensor data to update the filter is more robust while in eclipse and with some adjustments

can be made equally light computationally wise. Therefore, it was chosen to use the sensor data as the

filter input, based on the work presented in [5] and[37].

Using the sensors measurements directly, the kth residual error model zk would be given by the differ-

ence between the measurement obtained ŷk and the predicted h(x−k ):

zk = ŷk − hk
(
x̂−k
)

(5.71)

=


[
b̂1

]
3×1[

b̂2

]
3×1

 −
A (q̂−k ) · [r1]3×1

A
(
q̂−k
)
· [r2]3×1

 (5.72)

Where b̂ are the measurements vectors and A
(
q̂−k
)

is the attitude matrix build from the last attitude

quaternion estimate. This will result in the following measurement sensitivity matrix:

Hk =

(A (q̂−k ) r1

)
× 03×3(

A
(
q̂−k
)
r2

)
× 03×3

 (5.73)
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As the satellite will use 2 measurements the sensor covariance matrix R described in equation will be a

diagonal 6× 6 matrix constructed with each sensor covariance:

R =

 [R1] 03×3

03×3 [R2]

 (5.74)

Ri = 〈∆bi ·∆bTi 〉 (5.75)

Where ∆bi is the ith sensor measurement error represented in B. The large size of the matrices is

sometimes problematic for low power MCU and while in eclipse only a quarter of the gain matrix contains

usable information. To size of the gain matrix is related with the number of observations used, being 3

times the number of directions read. To reduce this Murrel’s version of the filter could be implemented,

decoupling the measurements and updating individually with each sensor data. This allowed to use a

smaller 3× 3 gain matrix for each sensor update this will be very helpful when inverting the covariances

matrix for equation 5.69 as R was also reduced to a three by three matrix.

5.4.4 MEKF Propagation

While waiting for new observations to update the state with, the attitude quaternion and covariance

matrix are propagated throughout the next time steps using state and covariance propagation equations.

The state transition matrix for the states are given as a time integration of F which is computed with an

exponential matrix as seen before and in this can be expanded into a Taylor Expansion series.

Φx(∆t) = e(F∆t) (5.76)

= I6×6 + F∆t +
1

2!
F2∆t2 +

1

3!
F3∆t3 + ... (5.77)

This will result in a two part matrix one similar to the one used to integrate the quaternion in EQUEST

algorithm with the difference of including the last bias estimation to correct the measured angular rate.

The second part which should update the bias in fact maintains it, i.e. assuming there is no evolution of

the bias in the propagation step. The state propagation is shortened to a quaternion integration with the

corrected angular rate. Another important change is to propagate the covariance matrix which is also

done with the transition matrix Φ but also includes the process covariance matrix Wk and integrated into

the process noise transitions matrix Qd as demonstrated in [38]:

Qd(∆t) =

∫ t0 +∆t

t0

Φx GWk GT ΦTx (5.78)
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Finally the full propagation step is given by the equations:

q̂−k+1 = Φqk+1

(
ω̂−k − β̂

)
q̂k (5.79)

P−k+1 = Φx P
−
k ΦTx + GkQGT

k (5.80)

5.5 Complementary Filter

For a low power MCU, running most Kalman filter variations are a demanding task. But in the work

developed in [39] presents a much simpler attitude estimator and later this give origin to the sensor input

form known as Explicit Complementary Filter [40]. The model uses the known rotation from B to I as

the default designation for attitude opposed to the one used here until now.

T = AT =
[
RIB
]

(5.81)

Such that the kinematics of the system can be described by the body angular rate of B relative to I.

Ṫ = T [ωB]× (5.82)

= (TωB)× T (5.83)

An auxiliary reference frame B̃ was created to represent the attitude estimation, where the rotation from

B̃ to I is represented by T̂ allowing to write the estimation error as the rotation matrix T̃ such that:

T̃ = T̂T T =
[
RIB̂
]T [

RIB
]

(5.84)

The purpose of the estimator is to converge these two frames such that T̃ = I3×3. Based on the rotation

dynamics in 5.82 the estimator dynamics general form was written as the derivative of T̂:

˙̂T = T̂ (ω̂B − βg + kp γ)× (5.85)

where kp is a positive scalar gain and γ is a correction term generated through T̃ and there are two

different ways to compute this factor. The first option used in the active and passive complementary

formulations reconstructs an attitude matrix identified as Ty from the sensors to then compute T̃ with

5.84. The disadvantage of this option is the propagation of the error through the reconstruction of Ty

however in the latter paper [[40]] presents a reformulation of the Passive Complementary Filter so that

γ can be computed from direct sensors measurements.

γ =
∑

ki
(
bi × T̂T ri

)
(5.86)
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where ki is the positive scalar gain of i sensor, bi is the i sensor direction measurement in B and ri

is i known direction in I. As explained before there is computational advantage in using the previous

quaternion representation of the attitude and using the quaternion dynamics presented in chapter 2 its

possible to describe the previous model with quaternion dynamics.

˙̂q = Ω
(
ω̂B − βg + kp γ

)
⊗ q̂ (5.87)

where q̂ is the representing the rotation from I to G. Another reason to use this filter is the possibility

to include an estimation of the gyroscope bias βg, allowing to correct any bias differences using the

correction factor γ:

˙̂
βg = − kg γ (5.88)
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Chapter 6

Control Algorithms

The satellite was designed to be able to behave in different modes in order to handle a few predicted

problems/situations, i.e. power loss, these states have different operational demands from the ADCS.

These demands can be grouped into two different operational modes. When a major error is diagnosed

or when the satellite is initialized the satellite falls into the ”safe” state. In this state the payload is power

on thus the only operational requirement is to maintain the spin rate of the satellite under 20o. This mode

is usually named ”detumbling”. In all other modes the payload needs the ADCS to point the satellite to

NADIR with a 20o accuracy, this ADCS operational mode will be named ”pointing”. When in this state

if the ADCS finds a problem that precludes fulfilling the mission requirement a report should be sent to

induce the satellite transition to the safe mode and consequently the fall back to the ”detumbling” mode.

The most usual approach used to design controllers is to compute the torque to bring the system to the

desired state, calling it desired toque and then use a function to translate it into the necessary magnetic

dipole input through another function.

mb = f(τd) (6.1)

In the magnetorquers case this is a problem, as can be seen in equation 4.17, the created torque is

always orthogonal to the magnetic dipole and magnetic field vector being impossible through the mag-

netorquers magnetic dipole to create a torque vector that has a non-null projection onto the magnetic

field direction. This is the major disadvantage of using magnetic actuators, an approximation could be

made by using a projection of the desired torque vector onto the axis orthogonal as seen in fig. 6.1.

This projection is obtained with a mapping function, using the cross product of the desired torque with

the magnetic field direction vector to compute the control magnetic vector.

mb =
BB × τ d
|BB|2

(6.2)
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Figure 6.1: Desired torque τd projection and resulting torque generated τm. Image from [41]

In control is common to use the energy equation into a Lyapunov function to prove the stability of the

controller. From the energy point of view the satellite kinematic energy V is described by the sum of the

kinetic and potential energy:

Ve = Vpot + Vt + Vrot (6.3)

Where the potential energy Vpot and translational energy Vt are related to the orbit energy while the

rotational energy relates to the rotation of B relative to I. From [42] the energy equations can be

specified as:

Vpot = −µmsat

|rI |
− 1

2
ω2
o (Jx + Jy + Jz) +

3

2
ω2
o ô

T J ô (6.4a)

Vt =
1

2
msat ω

2
o |rI |2 (6.4b)

Vrot =
1

2
ωT J ω (6.4c)

6.1 Lyapunov Stability

It is good practice to prove the stability of the controllers proposed before testing it to ensure the solution

will converge into a stability state. Among non linear systems Lyapunov’s Method is a good approach to

prove convergence near the equilibrium state. Lets consider a differential function V (x : D→ R, written
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with the dynamic states x ∈ D such that:

V (x0) = 0 (6.5)

V (x) > 0 ∀ x 6= x0 (6.6)

The system is proven to be asymptotically stable if the built function derivative V̇ is negative-definite.

V̇ ≤ 0 (6.7)

6.2 Detumbling Algorithm

The first objective the ADCS has to accomplish is to reduce the spinning rate of the satellite until it gets

lower than 5o/s relative to the orbit frame. The objective of the detumbling controller will be to create the

magnetic moment necessary to lower this rotational energy the minimum.

τ c : ω → 0 (6.8)

When considering a 1 kg satellite in 400 km it takes, in average, around six months to fall so the orbital

effects are rather slow meaning from the dynamics perspective the orbital energy could be considered

constant.

6.2.1 B-dot

Among the magnetic controlled satellites the most widely used solution provided by the literature is the

B-dot controller. This controller generates a magnetic dipole based on the rate of change of the Earth

magnetic field measured vector but with opposite sign. The magnetic rate is equal change in the mag-

netic field direction vector and the angular rate of the frame B w.r.t. E and eventually this would align the

satellite with the magnetic geomagnetic field. As the magnetic field derivative can attain values between

0o/s and 30o/s the constant gain solution sometimes is preferable to use a normalized derivative.

mb = − kb ḂB (6.9)

It is possible to estimate the control torque τ̂ generated by this magnetic dipole with the following equa-

tion:
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τ̂ c = − kb
||BB||2

(
ḂB ×BB

)
(6.10)

According to [ref] the global asymptotic stability cannot be proven with this formulation of the problem but

the angular rate will be reduced to a value near the orbit angular rate, for the expected 400 km altitude

orbit this value would be 0.0655o/s. Sometimes a Bang-Bang variant of this controller is used with a

constant gain, using the ḂB only to compute the signal of the dipole created.

mb = −mmax · sign
(
ḂB

)
(6.11)

Where mmax will be the maximum dipole generated for the defined gain.

6.2.2 Angular Rate Feedback

Another detumbling method can be used when the satellites have access to the gyroscope data, which

is a feedback of the gyro readings into the dipole moment.

mb = − kb (ωB ×BB) (6.12)

Where kb is the controller gain. According to [5] the torque generated with this function could be simpli-

fied to:

τc = − k
(
I3×3 −

BB ·BT
B

|BB|2

)
ωB (6.13)

To prove its stability using a Lyapunov function based on the rotational energy equation of the satellite,

with the following form:

V =
1

2
ωTB J ωB ≥ 0 (6.14)

The derivative V̇ of the Lyapunov function can be written using the 3.21 and 6.13:
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V̇ =
1

2
ωTB k

(
I3×3 −

BB ·BT
B

|BB|2

)
ωB ≤ 0 (6.15)

Whenever ωB is parallel to BB, V̇ assumes the value 0 making it negative semi-definite which doesn’t

allow to prove a global asymptotic stability through this method. However according to [43] this isn’t an

issue as that condition is briefly met and while the satellite doesn’t produce torque during that instant it

constantly reduces the torque whenever ωB isn’t parallel to BB.

6.3 Pointing Algorithm

The second operational mode NADIR pointing allows the ISTsat payload to complete its mission. The

first requirement the ADS-B antenna needs is to be pointed to the Earth surface, ideally to the projection

point of the satellite position on the earth surface, called NADIR. At NADIR the distance to the satellite is

minimum, ensuring the best signal receiving efficiency. The NADIR direction in E is changing throughout

the orbit so much as the position of the satellite itself so the control reference isn’t static however in O

the NADIR reference per definition coincides with o3 meaning it is static. This proves the usefulness of

using O for control.

qo = q
([
RBO
])

(6.16a)

= q⊗ q
([
ROE
]−1
)

(6.16b)

= q⊗ q
([
REO
])

(6.16c)

The attitude quaternion qo will represent the satellite attitude w.r.t. O while the desired attitude quater-

nion in O will be represented by qd.

δq = qd ⊗ q−1 (6.17)

The satellite is considered to be correctly pointing to nadir when the quaternion error between is equal

to identity quaternion
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δq →


1

0

0

0

 (6.18)

Historically the most used controllers in magnetic actuated cubesats due to their simplicity versus it’s per-

formance ratio are the proportional derivative (PD) and the linear quadratic regulator (LQR). However

the latter is not recommended because the magnetic field changes throughout the orbit also changing

the control matrix being necessary to load the MCU with the solving of Algebraic Riccati Equation or

accept a performance reduction by using an orbit averaged control matrix []. Both LQR variations pre-

sented higher risks than the already proven PD controller therefore were discarded.

6.3.1 Quaternion Feedback

The controller option chosen to study is a proportional derivative error feedback controller in which the

error vector fed is the quaternion rotation from the orbit reference frame to the body reference frame [44].

τ d = − ( kε δqε + kω ωB) (6.19)

Where δqε is the vector part of the quaternion error. Combining with eq. 6.2 the magnetic moment to

generate is given by the following equation:

mb = − kε
||BB||2

(BB × δqε) −
kω
||BB||2

(BB × ωB) (6.20)

To study the stability of the controller a equation based on [5] was used to form a Lyapunov function V .

V =
1

4
ωTB J ωB +

1

2
kp

(
δqε δqε

T + (1 − δqη)
2
)
≥ 0 (6.21)

Which is always positive except when ω = 0 and δqη = 0 where it takes the value 0. The derivative V̇ is

now described as:
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V̇ =
1

2
ωTB J ω̇B + kp

(
δqε δq̇

T
ε

)
+ kp (1 − δqη) δq̇η ≤ 0 (6.22)

Including the equation 3.21 into the previous we arrive at a more detailed equation.

V̇ = − 1

2
ωTB ( kε δqε + kω ωB) + kp δqε δq̇

T
ε

+ kp (1 − δqη) δq̇η

(6.23)

The equation can be simplified using the kinematic relations of q̇η and q̇ε presented in chapter 7 of [5]

and the previous control law 6.19.

V̇ = − 1

2
kω ω

T
B ωB (6.24)

As V̇ is always negative while kw is positive, being negative definite and V is always positive the global

asymptotic stability is considered proven.
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Chapter 7

Results

To evaluate the performance of the determination and control algorithm solutions, a dynamic model was

built in Simulink to simulate the satellite behaviour evolutio. When actuated by the computed magnetor-

quers duty-cycle as well as to model the noise in the sensors readings output. In this model are included

the important equations of motion from chapter 3 and it was subjected to a short validation.

The disturbance torques described in equation 3.20a are critical to tune the satellite controller and eval-

uate the its performance but in order to do so, the satellite orbit needs to be defined first. The satellite

will be launched from ISS and not having propulsion a good initial guess would be the ISS orbit.

Kepler parameter Value

Semi-Major axis 6790.76314 km

Eccentricity 0.0008434

Inclination 51.95846 o

Argument of Periapsis 66.91663 o

Right Ascending Node 125.81904 o

True Anomaly 266.60826 o

Table 7.1: ISS Kepler parameters taken from NASA website [45]

At 400 km of altitude the air depends on temperature but using the reference density from [1] into equa-

tion 3.10 it could be considered to have a mean density around 10−14 kg/m3. For cubesats the center

of pressure is around 0.01m away from the center of mass, while the aerodynamics properties are very

difficult to model but according to [11] the ballistic coefficient 1 of a 1U cubesat is between 0.02 and 0.05,

1The ballistic coefficient is the product of drag coefficient and section area divided by the body mass
(

A·Cd
msat

)
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allowing to estimate the aerodynamics torque using a value between of 0.03.

h (km) 400 300 200

|V| (m/s) 7672.54m/s 7729.83m/s 7788.43m/s

ρ (kg/m3) 1.026× 10−10 8.8953× 10−12 3.0354× 10−12

Fd (N) 2.372× 10−6 7.0556× 10−6 8.2621× 10−5

τ d (Nm) 2.372× 10−8 7.0556× 10−8 8.2621× 10−7

Table 7.2: Aerodynamic maximum force and torque at 200 km, 300 km and 400 km orbit altitudes

The magnetic residual dipole mr is not known until the satellite is fully assembled and even then it will

largely depend on which state the satellite is and the tasks which are performing however according to

NASA report [46] there is a relation between the satellites mass and the magnetic dipole magnitude of

0.004 to 0.01Am2/kg attending the satellite is low power the dipole.

〈|mr|〉 5 mAm2

3σmb 2 mAm2

τ b 2.5× 10−7 Nm

Table 7.3: Magnetic torque maximum value for at 400 km

For some of the algorithms is easier to use the normalized sensor covariances instead of the absolute

values. The sensors normalized covariance are the directional covariances and besides including the

measurement errors should also include the errors due to normalization.

∆b =
B

B
− B̂

B̂
=

B

|B|
− B + ∆B

|B + ∆B|
(7.1)

The matrix representation of the absolute variance in each axis is independent resulting in a diagonal

matrix however with normalization there is a small codependency factor is introduced. To check this a

Monte Carlo simulation was done with 106 points to establish a initial sensor covariance tuning point for

the determination algorithms.
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〈∆b ·∆bT 〉

Magnetometer (HMC5983)



0.0055 0.0018 0.0018

0.0018 0.0045 0.0015

0.0018 0.0015 0.0052



Coarse Sun Sensor



0.1669 −0.0048 −0.0012

−0.0048 0.1668 0.0014

−0.0012 0.0014 0.4093


Table 7.4: Initial conditions used for determination algorithms simulations.

After the normalization, the magnetometer covariance matrix is close to covariance built with the nor-

malized absolute error achieved through dividing the specified expected error by the mean magnitude of

the magnetic reading. Even so, the RMSE of the magnetometer is 0.56 o.

The coarse sun sensor covariance however is a little more erratic with a specially high covariance as-

sociated to the z axis as it only has one solar panel located in the +z face while the other two axes

have two panels each facing opposite directions. When looking into the probability density of the error

depicted by figure 7.1 the RMSE found to be 22.13 o which in comparison to the magnetometer is quite

high.
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Figure 7.1: Probability density distribution of the coarse sun sensor absolute angular error.

59



To understand the CSS error better the data was separated according to the number of lighted faces

allowing to identify the covariance for each separate lighting state. It was found the error associated to

each face and the satellite spherical coverage and presented in the following table.

Lighted Photodiodes 0 1 2 3

RMSE (o) - 34.73 19.23 7.14× 10−4

Coverage (%) 2.996 39.65 52.20 5.15

Table 7.5: Sun sensor RMSE and spherical coverage by the number of lighted photodiodes, for more

information on pdf for each situation see annex D.1.

The CSS simulated presents good results when three photodiodes are sunlit, unfortunately this only

happens for 5% of incident angles. When less than 3 photodiodes are lighted information about one

of the tridimensional vector components is lost and the error starts to increases. This would account

for almost 92% of the possible angles, most of its flight the satellite will have one or two photodiodes

lighted. Finally there is the ”blind” incident angles that correspond to angles where the -z face which

has no photodiodes is heading towards the sunlight. The major error difference between sensors will be

particular visible and important in the tuning of the determination algorithm parameters as well as the

number of sunlit solar panels.

7.1 Determination Algorithms

To evaluate the algorithms the most important parameter is the angular error between the estimated

quaternion q̂ and the true attitude quaternion q. The error between them can be represented by a

quaternion error δq which in this case shall represent the rotation from the estimated body frame B̃ into

the body frame B.

δq = q⊗ (q̂)
−1 (7.2)

= q([RBI ]) ⊗ q([RIB̃]) (7.3)

The angular error δθq is given by the transformation from quaternion into rotations vector.

δθq = 2 cos−1 (qη) (7.4)

The deterministic algorithms presented in chapter were tested with the two sets of initial conditions al-
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though the system dynamics does not directly affect the algorithm performance. The dynamic solutions

however depend upon the gyroscope readings and for this test the control was not used causing the

angular to change very little. Thus is necessary establish test cases with different angular rates. To

get a rough sense of the angular rates which the satellite would be subject to some testing using the

controllers algorithms were done, using the true attitude to satellite as an input for the controller. After

which the following set of cases were designed, the first case was set to start with a 2 o/s angular rate

magnitude while the second will be 5 o/s which corresponds to the maximum rotation speed allowed

before the satellite enters the detumbling mode.

Initial Condition |ωB| ωB q q̂

Case 1 2 o/s



1.4664

1.2373

0.5647





0.8526

0.0309

0.3937

0.3423





1

0

0

0



Case 2 5 o/s



−4.4480

0.0915

0.1075





−0.5504

0.3520

0.5282

0.5424





1

0

0

0


Table 7.6: Initial conditions used for determination algorithms simulations.

Lastly for some static algorithms is necessary to define the sensor weight parameters based on their

covariance. Although the relative weight equation from equation 7.5 would suggest the best results

would appear using a1 = 0.999 and a2 = 0.001 this would not gather enough information from the CSS

to have a stable estimation. So it was decided to lower this relation between sigmas to a1 = 0.9 and

a2 = 0.1.

a1 =
σ2

1

σ2
1 + σ2

2

(7.5)

a2 =
σ2

2

σ2
1 + σ2

2

(7.6)

Using the first case, 4 orbits were simulated, the error graphics were added to annex D.2, then the static
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algorithms were filtered to discard the eclipse instants and then were transcript into table 7.7, where the

error evaluation parameters represented are the root mean square error (RMSE) and the maximum

value found (Emax).

Case 1 Case 2

Method RMSE (o) Emax (o) RMSE (o) Emax (o)

TRIAD 34.97 179.997 77.147 180

SVD 22.57 179.992 49.789 180

QUEST 23.33 179.936 38.41 180

FOAM 31.92 179.919 63.03 180

Table 7.7: Deterministic algorithms error results when the satellite is lightened

The table highlights that neither method is within the acceptable error margin more so they all presented

errors of 180o. This can be explained looking at the angle between the reference vectors in figure 7.2(a)

which sometimes were separated by less than 15o and the accuracy the algorithms are able to obtain

reduces the closer the vectors are to be parallel. In this graphic a partial plot of the QUEST algorithm

error during the first orbit of the first example case is used to emphasize the relation of the angle between

reference vectors and the attitude error. It is possible to see the more collinear the vectors are the worst

the algorithm performs.
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Figure 7.2: First orbit revolution close-up of the arc-degree displacement between magnetometer and

CSS read vectors (a) and QUEST attitude error (b) from first case simulation.
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The collinear problem together with the CSS performance explains the instability of the solutions however

there is a notable performance difference between them. As expected the non-weighted TRIAD was the

less stable method of the four a consequence of being the only algorithm that does not use relative

weights in the sensor data. The difference obtain with this hardware set, highlights the advantage of

using a greater weight for the more accurate magnetometer and a lower for the CSS. QUEST and SVD

presented a close error performance, the latter a little better in the first case and worst in the second but

both were clearly better than TRIAD and FOAM.

After testing the first group of algorithms, followed the evaluation of the EQUEST, MEKF and ECF. The

dynamic algorithms simulations need more tuning for filter gains and covariances used in each method,

for the first simulations the best results were granted using the values in table.

7.8.

Solution Parameters

EQUEST β = 0.99

MEKFs
R1 =

(
5.5× 10−3

)
I3×3 R2 = diag([0.16, 0.16, 0.45])

σarw = 0.003 σrrw = 3.17× 10−5

ECF k1 = 0.95 k2 = 0.05 kp = 0.18 kg = 0.0003

Table 7.8: Dynamic algorithms default parameters configuration used

The results obtain were unsatisfactory as can be seen in figure 7.3 the angular error of the Explicit Com-

plementary Filter for the first simulation case isn’t stable even after the eclipse. This is a problem as the

reference signal for attitude controller is influenced by the attitude estimation and if the estimation isn’t

stable then the controller cannot perform a good attitude control. This problem was also verified in the

other two solutions.

63



0 2 4 6 8 10
Time (h)

-5

0

5

10

15

20

25

30

35

40

A
ng

ul
ar

 E
rr

or
 (

o
)

Figure 7.3: Instability of the ECF attitude error during 7 orbits simulation with the initial conditions of the

case 1 (shaded regions indicate eclipse instances).

After testing the quaternion propagation, magnetometer and gyroscope data the reason for this was

determined to be the corrupted information provided by the CSS. The found solution was to decompose

the solution and provide different responses according to the to the number of panels lighted by the sun.

This step would extended the tuning period more than was expected even so a stable configuration was

obtain for each and is presented next.

The EQUEST method used a configurable base weight β0 according to the number of panels lighted

described in the following table 7.9.

Number of Panels

1 2 3

β0 0.99 0.95 0.50

Table 7.9: Default dynamic algorithms parameters configuration used

The results of the simulation obtain show that this method due to using the satellite dynamic informa-

tion is much more stable than QUEST or any of the other deterministic algorithms presented here. A

comparison between QUEST and EQUEST for the first case is represented in the figure . Where the

deterministic has a much more disperse error in comparison to the continuous error of the EQUEST. In

this specific case where the QUEST had an already reported RMSE around 23 o while in the same test

period the EQUEST could provide a decrease of the RMSE to 13.58 o.
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Figure 7.4: Comparison between the angular error of QUEST (a) and EQUEST (b) during 7 orbits

simulation with the initial conditions of the case 1 (shaded regions indicate eclipse instances).

The second advantage of this method is that it can provide attitude estimations while the satellite is in

eclipse. The satellite propagates the attitude it had right before entering eclipse which doesn’t directly

mitigate any existent attitude estimation error. The attitude error is propagated and the propagator error

is also added to it, this leads to an error in eclipse that varies according to the results obtain right before

entering eclipse and the propagator error. The simulations with the different initial conditions revealed

the EQUEST can achieve an error up to 124.91 o presenting an overall RMSE of for case 1 and 35.12 o

for the second, showing that that results are already better than any of the presented deterministic

algorithms so far. The second simulation case showed a similar error during the daylight but in eclipse

the error rose much slower which is related to the smaller relative error of the bias at higher angular

rates.

Case 1 Case 2

Method RMSE (o) Emax (o) RMSE (o) Emax (o)

EQUEST 33.41 124.91 77.147 180

Table 7.10: EQUEST error simulation results after the satellite first daylight

The MEKF was the next algorithm to test and of all the three dynamic solutions was was the most prob-

lematic to tune. The adaptability of the algorithm to the number of lighted solar panels was introduced
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in the CSS covariance matrix R2 which assumes different values for each situation.

Number of Lighted Panels

1 2 3

R2



0.2213 −0.0144 −0.0120

−0.0144 0.2283 −0.0051

−0.0120 −0.0051 0.4916





0.1168 0.0061 0.0044

0.0061 0.1056 0.0015

0.0044 0.0015 0.2903





0.2213 −0.0144 −0.0120

−0.0144 0.2283 −0.0051

−0.0120 −0.0051 0.4916



Table 7.11: MEKF CSS covariance parameter setup

The results obtain with MEKF solution showed a decrease of the attitude error throughout all orbit in-

stances. During the daylight part of the orbit the first case simulation presented a RMSE of 3.38 o, the

overall RMSE error obtained was 24.94 o in case 1 and 10.89 o in case 2 however due to setted initial

conditions the satellite starts in eclipse resulting in a high error during that initial period of time. When

excluding this initial period of around 1950 s the overall RMSE reduces to 9.19 o for the first case and

7.38 o for the second case. The maximum error obtain after the first eclipse was 42.90 o and 28.76 o for

the case 1 and 2 respectively.

Figure 7.5: Angular error of the MEKF for 7 orbital revolutions simulation with the first case initial condi-

tions (shaded regions indicate eclipse instances).

The greatest advantage the MEKF provides when compared to the EQUEST it’s estimation of the angu-

lar rate bias error. As seen in the previous figure the attitude estimation error during eclipse is maintained

below 43 o during eclipse independent of whatever value the error was before the start of eclipse. The es-

timation performance improvement during eclipse is due to the drift error decrease during propagation.

As seen in the figure 7.6 the estimation after stabilization maintains the bias error well below 50mdeg/s
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in each axis after running for two hours, as the RMSE is smaller than 15mdeg/s for each axis meaning

the mean bias error should be even smaller which allows for mitigation of the gyro drift effect through

time.
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Figure 7.6: MEKF gyro bias estimation error in the 3 body axis (b1 , b2 , b3) for 7 orbital revolutions

simulation with the first case initial conditions (shaded regions indicate eclipse instances).

Using the established metrics to evaluate MEKF results the RMSE and Emax is represented into the

following table 7.12.

Case 1 Case 2

Parameter RMSE Emax RMSE Emax

Attitude 9.19 o 42.90 o 7.39 o 28.76 o

Bias 10.9mdeg/s 70.1mdeg/s 32.1mdeg/s 40.2mdeg/s

Table 7.12: MEKF attitude error and bias error results for both simulation cases after the first sunlight

At last the ECF was tuned to also have different gains according to the number of lighted panels. Instead

of solely adapting the CSS weight k2 to each situation, all the other gains were tuned as well for each

case. The reason for this is as the bias compensation is done directly with the sensor readings and this

would allow to correct the gyro drift even in the absence of sunlight. For a conservative approach over

the CSS contribution it was chosen to discard the CSS data even if 1 panels is lighted as the expected

error for this instance is still quite large.
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Number of Panels

0 1 2 3

k1 0.1 0.1 0.9 0.5

k2 0.0 0.0 0.1 0.5

kp 0.01 0.001 0.06 0.20

kg 0.000001 0.000001 0.00003 0.00003

Table 7.13: Explicit Complementary Filter decoupled parameter setup

The simulations of the two example cases revealed the ECF algorithm has a performance comparable

to the MEKF but generally more stable although with significant differences between cases. The overall

RMSE over seven revolutions after receiving the first valid data set from CSS was 6.53 o for the first

setup, for the second case the RMSE was 6.33. The maximum error is also very different between

examples, the first presented a maximum of 24.89 o after stabilization while the second revealed a maxi-

mum of . 18.58 o.

Figure 7.7: Angular error of the ECF for 7 orbital revolutions simulation with the first case initial conditions

(shaded regions indicate eclipse instances).

The gyro bias estimation obtained with the ECF showed good results for the first case converging the

error to zero in the initial period and maintaining the bias error in each axis below 40mdeg/s after

stabilizing. On the other hand the second case simulation reveal the estimator error wasn’t converging

to zero in the initial period although it after stabilizing the error was below 40mdeg/s in each axis. For

stability of the bias estimation, it was chosen a small integral gain resulting in a lower convergence rate

when compared to the MEFK estimator and this is clear in the initial periods of both cases.
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Figure 7.8: ECF gyro bias estimation error in the 3 body axis (b1 , b2 , b3) for seven orbital revolutions

simulation with the first case initial conditions (shaded regions indicate eclipse instances).

Using the same metrics to evaluate ECF results the RMSE and Emax is summarized into the following

table 7.12.

Case 1 Case 2

Parameter RMSE Emax RMSE Emax

Attitude 6.53 o 24.89 o 6.33 o 20.90 o

Bias 12.6mdeg/s 26.2mdeg/s 32.1mdeg/s 60.3mdeg/s

Table 7.14: ECF attitude error and bias error results for both simulation cases after the first sunlight

7.2 Detumbling Results

For the detumbling algorithm test the cases chosen used three different initial conditions, one low rate

for a quick assessment of the most probable case. Three other with the established limit rate magnitude

although with different directions of rotations and also different initial attitudes. All the first three test

cases assume an orbit equal to the ISS and despite not expecting the orbit to be much different from it

in the beginning the method may be used latter if the satellite gets into safe mode and the orbit is no

longer similar to the ISS. To count for such situation the fourth and last test case was set to begin in an

orbit with a different inclination even if in reality this orbital parameter is expected to change very little

throughout the mission it is the one that provokes the most changes the magnetic field. This modification

will induce an immediate change in the orientation of the field relative to the orbit and how quickly the

magnitude changes, in this case as a lower inclination was selected, 15o, the magnetic field magnitude

will be more regular. This last test would try to prove the magnetic derivative algorithms reliability even

in the case of a slower magnetic field rate.
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Parameter Case 1 Case 2 Case 3 Case 4

|ωB| (o/s) 15 30 30 30

ωB (o/s)



7.9410

8.7150

9.2730





18.3270

0.9990

23.7300





9.8010

19.6650

20.4270





27.5400

10.3710

5.8260


Orbit Inclination (o) 51.95846 51.95846 51.95846 15.4387

q



0.1190

0.4984

0.9597

0.3404





0.5789

0.2214

0.7431

0.2523





0.8575

0.2172

0.2339

0.4035





0.6879

0.2080

0.6662

0.1992


Table 7.15: Detumbling controller example conditions

To minimize energy consumption these cases were used to tune the minimum gain necessary for each

algorithm to reach the threshold angular rate before completing one revolution. The B-dot seem to work

best with k = −0.00025, the bang bang version of the B-dot settled with k = −0.1 and the gyro feedback

controller used k = −3500. As the bang bang b-dot works with normalized vectors it limits the controller

output to −0.1 however the other two controllers used fully use the magnetorquers drivers input range.

Assuming the magnitude of the magnetic field changes between 20µT and 50µT the saturation of the

controllers corresponding to the 80% duty-cycle can be achieved. The saturation of the gyro feedback

is expected to be around 4.5o/s, the saturation of the b-dot was verified to be around 3200nT/s. After

running some simulations, the results were presented into the table 7.16 and as can be seen they

remain consistent throughout the cases except for the case 2 simulations of the gyro feedback and b-dot

as well. In both these simulations of case 2 the spacecraft was constantly aligning the angular rate axis

with the magnetic field. This alignment caused the derivative of the magnetic field to be almost zero and

the cross product of angular with the magnetic field to be zero, resulting in both cases in a near zero

control torque which is not. As discussed in section 6.2.2 these are the points where the system doesn’t

converge into the design equilibrium point but also doesn’t diverge as can be seen in 7.9 graphic where

the angular rate in one axis was periodically constant for both algorithms.
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Case Parameter B-dot Bang Bang B-dot Gyro-feedback

1
∆t (s) 217 1006 230

∆E (J) 50 38 47

2
∆t (s) 17182 2094 7170

∆E (J) 774 82 485

3
∆t (s) 390 4030 392

∆E (J) 161 150 133

4
∆t (s) 332 2255 313

∆E (J) 132 84 105

Table 7.16: Detumbling controllers simulation results

In some cases the gyro-feedback was less than 5% slower than the b-dot while revealing an improved

energy consumption by saving up to 18% relative to the b-dot. When the inclination orbit changed it

clearly showed the disadvantage of b-dot for small inclination parameter in comparison with the gyro-

feedback which was around 5% faster while consuming less 18% of energy. The lower output limit of

the bang-bang is evident in cases 1,3 and 4 where it was slower to reach the threshold than the other

two by around 500% in case 1 and 1000% in case 3 and 4. Although it took more time to reach the

objective rate, the energy consumption for all the cases was better than other two controllers. It showed

less than 20% energy consumption in case 1 and 4, in case 3 was on pair with the other two showing a

consumption higher than the gyro-feedback but less than the b-dot and finally for case 4 the difference

got to an extreme less, than 80%, due to the bad performance presented by the other two controllers

explained earlier.
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Figure 7.9: Angular rate in the three body axis for the second simulation case using the b-dot (a) and

gyro feedback (b) algorithms.

7.3 Pointing results

The last part of this chapter will focus on the simulation results obtained with the PD algorithm which

should allow the satellite to properly carry out the mission. Contrary to the attitude estimation the control

simulations take much more time to complete because the actuator response has to be included into the

simulation. This makes impossible to use the same data set for all the simulations as was done in the

attitude estimation, for the detumbling controller this posed a small problem as the actuator response was

sampled at 0.5 Hz and the the threshold angular rate was in most cases achieved in less than 1h of the

simulated time. However for the pointing controller is much more important to evaluate the stability after

achieving the desired values which extend the simulation time frame by a few orbit periods. Also for the

controller to be effective a smaller 0.5 s sampling time was imposed as the 2 s used in detumbling would

allow for much external torque to induce a considerate rotation and also avoids controller overshoot

problems. The detumble controllers simulated reduce the angular rate until they reach their low limit of

0.8 o/s from this point on they can’t reduce much more due to noise contributions and due to the small

gain which produces a smaller actuation signal than the magnetorquers drivers can produce. Taking this

into consideration the chosen pointing start condition chosen was 1 o/s to be near this minimum angular

rate. The orbit initial conditions used in this test were already described in 7.1 and the remaining initial

conditions for this test are described in the following table.
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ωB (o/s) q kε kω



0.76

−0.64

0.12





0.6073

−0.3896

0.0589

−0.6899


−12760 −1500

Table 7.17: Initial angular rate, attitude and controller gains used in for the simulation.

In this test it was necessary to feed the position as reference to compute the desired orientation and it

was assumed to be exempt of errors when in reality it will be fed by a propagator which introduces some

errors. However the modulation of this error would need a position/orbit estimator study drifting from this

thesis focus. Apart from this assumption the remaining errors will be included, as will occur in the real

flight the satellite will use the results from the attitude estimator to compute the actuation signal based

upon it’s position relative to the Earth, the interference of the atmosphere, gravity and residual magnetic

dipole were also included. The simulation was set to run for 7 complete orbit revolutions, equivalent to a

total time of 10h30min.
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Figure 7.10: Pointing controller simulation angular error throughout 7 orbits (shaded regions indicate

eclipse instances).

The estimator used in this test was the ECF configured as previously tested and the initial guess fed

was forced to be to the corrected satellite attitude to avoid the period where the estimator has not yet

converged into the correct attitude. It is possible to avoid this situation because the ADCS state transition

dictates the satellite will always pass from a detumbling phase first before starting the pointing control
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and it can be assumed that in detumbling the satellite can also be doing attitude estimation entering the

pointing state with a near converged attitude estimation.

In this simulation the controller took around half orbit to get the z axis within 20 o of the NADIR align

position and after the first orbit it spend 99.7 % of the time inside that error limit. The more difficult belt

below the 10 o pointing error counts for 87.45 % after the satellite first orbit revolution and 54.30 % of the

time within the 5 o limit.
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Figure 7.11: Cumulative probability function of the pointing controller error.

The last parameter to evaluate the pointing controller by is the electric energy consumption of the magne-

torquers which should not surpass the power budget and limits imposed by the EPS. The budget counted

for an average power consumption of 39mW from the ADCS magnetorquers. The maximum power the

magnetorquers demand from this results is 233.7mW which is equivalent to the maximum power one

magnetorquer alone is capable of consuming. More importantly the average power consumption after

stabilization (around 1 orbit time) is 6.1mW . and does increase when compared to overall average of

10.5mW during the 7 orbit period.

〈P 〉 max(P ) 〈P 〉2:7

10.5mW 233.7mW 6.1mW

Table 7.18: Power consumption statistics of the pointing controller for the 7 orbit simulation.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The first conclusion we get from the results of this work is that the CSS configuration used provides good

sun direction vectors when three photodiodes are lighted, if only two photodiodes are lighted the error

increases greatly but is still usable. Lastly for only one lighted photodiode the probability of having a

great error is too high to be usable. Due to this, the static attitude estimators QUEST, TRIAD, FOAM and

SVD by themselves are not adequate for this satellite as they cannot ensure a stable attitude estimation

which is necessary to perform the attitude control. However these algorithms when incorporated into

the EQUEST method remain subjectively simple, needing low computational power and provides very

good attitude estimations while the satellite is in the day time part of the orbit. The problem emerges

when the solution propagates the attitude estimation without observations for very long periods of time,

e.g. eclipse, due to the gyroscope bias the attitude propagation is drifting faster from the actual attitude.

This disadvantage limits the use of EQUEST to a particular set of scenarios: if the gyroscope bias is

very stable then through tests is possible to compensate for it or if it was imposed to only operate during

the day time region of the orbit. The latter however would arise a few complications in the the control

response time, even so neither EQUEST usability scenarios are compatible with the ISTsat-1 mission

and hardware.

The solutions studied to solve the bias problem were the MEKF and the ECF, both provide a good at-

titude estimations throughout every point of the orbit. With MEKF the attitude results are better than

EQUESTs while suffering the same problem, during the eclipse the error increased although not as

much as EQUEST. The source of this problem was not in the bias as the MEKF can provide a very good

bias estimation converging to the actual value in every situation. The algorithm allows fine tuning through

the covariance matrices and due to this eclipse error increase it is possible to tune these matrices to

achieve even better results for these regions. The biggest disadvantage of the MEKF when compared to

the EQUEST or ECF is exactly related to these matrices, as even after the Murrell’s formulation reducing

the algorithm largest operations to 3 by 3 matrix operations it still uses more matrix operations in general

than the other two options, specially to compute the Kalman gain (see equation 5.69). For a bigger and
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more powerful satellite would be preferable to use this algorithm as the tuning possibilities and space

legacy make it the most secure option. However for the low power OBC inside the ISTsat-1 the high

number of matrix operations can pose a problem and even if it was capable of computing an attitude

estimation with this algorithm there is a chance it could not do it at the desired sampling time.

The results from ECF are much more stable than any of the other tested algorithms and provides a

comfortable error for the attitude controller to work with. Although the gyroscope bias estimation is not

as good as MEKF, its estimations are always close to the real value. This is the most adequate algorithm

for the ISTsat-1 because the computational complexity is very low while the attitude estimation is good

enough to ensure NADIR pointing with less than 150 km error.

From the detumbling results two different performance groups can be defined according to their perfor-

mance: the gyro and b-dot form the first both quick at reducing the satellite angular rate, the second

is the Bang-Bang B-dot which by definition is limited and as such has a slower response. From these

two groups the slower response is the more efficient and it spends energy at a slower pace allowing the

EPS to replenish its battery and keep it charged for most of the time. Concerning safety and robustness

during the detumbling the bang-bang variation of the b-dot would be the advisable controller.

Lastly, the pointing controller achieves an accuracy in pointing at NADIR below 10 o for 87% of the sim-

ulated time translating into less than 70 km pointing error. These results already account for the error

ECF introduces in estimating the satellite attitude, therefore the combo estimator plus controller in spite

of their errors and disturbance torques are able to meet the the mission requirements. A good safety

margin was also introduced by maintaining the control actuation time at 0.5 s meaning it was chosen to

use a slow sampling time even though the satellite may be able to use a quicker control sampling time

to ensure all other OBC tasks are run in real-time. Another important note is that after the start of the

controller the satellite will take less than half an orbit to be within 20 o of NADIR depending on the initial

attitude. The slow control suits the ISTsat-1 discrete actuation as the low proportional gain also results

in less overshoot near the NADIR reference axis and offers a more tight control over the angular rate

avoiding excessive rotation problems.

8.2 Future Work

From the hardware perspective the ISTsat-1 could make use of a more detailed magnetorquer , to

characterize their hysteresis and compensate the inductive impedance effects in actuation inaccuracy if

needed. Still in sensor topic the CSS model could also be more detailed, if it were to include an Earth

albedo model. This could also allow to enhance the CSS measurements if the S/C used the same model

for computing the sun direction vector.

From the operational perspective a few more tests are necessary, the most important is to test the OBC

capability of computing a set of solutions in real-time without interfering with the other tasks.

Lastly there are some performance tests to be ran like using a Helmholtz chamber to check if the de-

tumbling time is within the simulated values. Another more complex test is necessary in order to validate

the simulated performance, to do this an air-bearing should be used to enable three rotational degrees
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of freedom, as well as a Helmholtz chamber and a light bulb. This will allow to generate and control all

the ADCS reference vectors while simulating a situation closer to the orbit conditions.
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Appendix A

Math Properties

A.1 Vector Operators

Let v be a random R3 vector the matrix [v]× is defined as the cross product matrix form with another R3

random vector u.

v × u =


0 −v3 v2

v3 0 −v1

−v2 v1 0

 · u = [v]× · u (A.1)

=


0 −v3 v2

v3 0 −v1

−v2 v1 0

 · v = [u]
T
× · v (A.2)

A.2 Quaternion Operations

The quaternion product is generally identified with the symbol ⊗ and can be expressed as two different

matrix notations:
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q⊗ p =

 qη · pη − qε · pε
qη · pε + pη · qε − qε × pε

 (A.3)

=

qη −qTε
qε qηI + [qε]×

 · p =


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 · p (A.4)

=

pη −pTε
pε pηI + [pε]×

 · q =


p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0

 · q (A.5)

The quaternion q has its conjugate represented as q∗ and have a symmetric imaginary axis vector.

q∗ =

 η

−ε

 (A.6)

This means the quaternion product of a quaternion by its conjugate it’s equal to the identity quaternion

which is a property of the inverse making the conjugate by definition equal to the inverse and a useful

method to compute the inverse.

q⊗ q∗ = q∗ ⊗ q = q⊗ q−1 = q−1 ⊗ q =


1

0

0

0

 (A.7)

A.3 Quaternion Derivative

From the definition the quaternion derivative is written as the limit of the instant difference divided by the

time difference.

q̇ = lim
t→t0

qt − qt0
t − t0

(A.8)

But for small angles the derivative of the quaternion can be represented by a rotation from I to B

multiplicating the quaternion by the angular rate pure quaternion measured in B. So that the derivative
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can be written as a function of pure quaternion Ω.

q̇ ≈ 1

2
Ω(ω)q (A.9)

The pure quaternion is the vector transformed into quaternion and due to the angular rate special use

the matrix form of its pure quaternion is represented with Ω.

Ω (ω) =

0 −ωT

ω − [ω]×

 (A.10)

A.4 Quaternion Discrete Integration

The attitude quaternion can be propagated using it’s derivative in a direct integration method as ex-

plicited with equation A.11 although this is only possible in a time-continuous platform like Simulink. For

the onboard MCU the algorithm will run in discrete time line so the problem will have to be adapted for

discrete time in order to correctly represent the real behavior of the system. The solution to the differen-

tial equation A.9 is adapted from continuous time to discrete:

q(t) = e(
∆t
2 Ω) q0 (A.11)

qk+1 = Φqk+1 · qk (A.12)

Where the discrete version of the transition matrix (∆t2 Ω) from instant k to the next instant k + 1 is

represented by the matrix Φ. From here the Taylor series expansion can be used to avoid compute the

matrix exponential.

Φqk+1 ≈ I4×4 +

(
∆t

2

)
· Ω (ω) +

1

2!

(
∆t

2
· Ω (ω)

)2

+
1

3!

(
∆t

2
· Ω (ω)

)3

+ ... (A.13)

If the angular rate wouldn’t change between each kth steps, a derivative of the quaternion would be suffi-

cient to describe quaternion state transition matrix Φ using a zeroth order quaternion integrator equation:

Φqk+1 = = I4×4 +

(
∆t

2

)
· Ω (ωk+1) (A.14)

But if the angular rate is approximated to an average between each step a first order quaternion integra-

tor could then be described following the results demonstrated in [1].

〈ωk+1〉 =
ωk+1 + ωk

∆t
(A.15)
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After using the averaged angular rate into the transition and the Taylor series expansion the following

equation to compute Φ emerges:

Φqk+1 = I4×4 +

(
∆t

2

)
· Ω (ωk+1) +

(
∆t2

48

)
·

[
Ω (ωk+1) Ω (ωk) − Ω (ωk) Ω (ωk+1)

]
(A.16)
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Appendix B

Algorithm Summary

In summary the filter algorithms can be described by the steps presented in the following tables.

B.1 Enhanced QUEST

Propagate q̃k = Φqk(ω̃k) q̂k−1

Gain β =
(
1 − |r1 · r2|2

)
β0

β = 0 (when in eclipse)

Update q̂k = (1 − β) · q̃k + β · qkQUEST

Table B.1: EQUEST steps summary
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B.2 MEKF Sensor Input

Initialize
x̂−k = x0

P−k = P0

Gain

Hk =


(
A
(
q̂−k
)
r1

)
× 03×3(

A
(
q̂−k
)
r2

)
× 03×3


Sk = Hk P

−
k HT

k + R

Kk = P−k Hk S
−1
k

Update

P+
k = [I − KkHk] P−k [I − KkHk]

T

zk =


[
b̃1

]
3×1[

b̃2

]
3×1

 −
A
(
q̂−k
)
· [r1]3×1

A
(
q̂−k
)
· [r2]3×1


x̂+
k = x̂−k + Kkzk

x̂+
k =

[
δϑ̂+

k

T
β̂+
k

T
]T

q̂∗k = δqk(δϑ̂+
k ) ⊗ q̂−k

q̂+
k =

q̂∗k
||q̂∗k||

Propagation

ω̂k = ωk − β̂k

q̂k+1 = Φqk+1(ω̂k) q̂+
k

P−k+1 = Φx P
−
k ΦTx + GkQGT

k

Table B.2: MEKF summary using sensors input

88



B.3 Explicit Complementary Filter

Observation γ =
∑
ki (bi × A (q̂) ri)

Update

˙̂q = Ω
(
ω̂B − βg + kp γ

)
⊗ q̂

˙̂
βg = − kg γ

Propagation
ω̂k = ωk − β̂k

q̂k+1 = Φqk+1(ω̂k) q̂+
k

Table B.3: ECF summary
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Appendix C

Simulink Model

After building the simulink model it was necessary to check if the it’s errors were acceptable and to do so

a set of intial conditions were selected whose results can be compared to a reference. The set of initial

conditions necessary to test the translation were the intial position, velocity and date of the satellite in

the I frame as well as the satellite mass. For the body rotation movement the intial conditions needed

to set were the attitude relative to I and angular rate in the B relative to I.

Condition Value

Date 8th Jun of 2017

xI (m) −4.2706× 106

yI (m) −5.2571× 106

zI (m) 5.6095× 103

ẋI (m/s) 3.7068× 103

ẏI (m/s) −2.9891× 103

żI (m/s) 6.0162× 103

ωB (o/s) [1 1 1]T

q [1 0 0 0]T

S/Cmass 1.0

S/Cinertia 1.6667× 10−5 ·


1 0 0

0 1 0

0 0 1


∂t (s) 0.1

Table C.1: Inital conditions used for model validation simulation

C.1 Position

The moviments of translation and rotation can be considedered as independent of each other and as

such they were decouple to test each separatly. The default configuration of the solver simulink uses
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is a variable step which was manually limited to 1 second and run for 10 orbits which is equivalent to

almost 15h. The simulation results were compared to NASA tool GMAT (General Mission Analysis Tool)

simulation of the same orbit.

Figure C.1: X coordenate obtained with GMAT and simulink model throuhout 5 orbits

Figure C.2: Y coordenate obtained with GMAT and simulink model throuhout 5 orbits

Figure C.3: Z coordenate obtained with GMAT and simulink model throuhout 5 orbits

The error rises constantly through time reveling a correspondig steady error in the position propagator

although near the end of the fifth orbit it the coordinates starts to deviate more rapidly from the GMAT

reference. From the following table it is possible to check that most of the time the error under 300 km.
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Orbits 5 10

Ēx (km) 98.7 317.9

Ēy (km) 109.8 311.2

Ēz (km) 105.8 321.4

Table C.2: Simulator positional error compared to GMAT reference

C.2 Atitude

For the simulator attitude validation the approach was used instead of comparing to GMAT, a known

case was setup up for the simulator to work on. The setup of the simulink solver was maintain as setted

previoulsy but the the computation of the attitude is expected to be more demanding a smaller step may

be expected. Another inital assumption was made regarding the inertia matrix of the tensor if the body

is assumed symmetric in all axis then the inertia matrix is diagonal which consequently will nullify one of

the dynamic equation (eq. ??) components.

(ω × Iω) = 0 ← I11 = I22 = I33 (C.1)

The first test will assed the integration errors in the attitude computation and will consist in setting an

intial angular rate and compare its evolution over a period of time against the expected results. The

simpliest test was to impose a 10 o/s rate in one axis and read the results of a 36 s simulation to check

if in the final position was equal to the intial and the middle points are coherent. To recreate this kind of

movement the body must not be subject to any torques leading to temporarily turn off the external and

control torques. The second test was similar but imposing a 1.0 o/s rate in all axes simultaneously. The

expect result according to the rotation angle representation is a revolution with a 207.8461 s period.

|ω| =
√

3 → T =
360

|ω|
= 207.8461 s (C.2)

Using the the identity attitude [1 0 0 0]T as the inital condition is possible to see final attitude value is

actually symmetric to the initial value. Remebering the quaternion rules, symmetric quaternions rep-

resent the same rotation, the results are what was expected and do return to the initial value after the

207.8461 s.
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Figure C.4: Attitude simulation validation test results

Lastlty, a third test was done using another known result. This time, with applying a sinusoidal

external torque with the folling form:

τ(t) = A · cos(2πft) (C.3)

Where A is the torque amplitude and f the torque sinusoidal frequency. Using the dynamic model

established in chapter 3 the angular derivative is established as:

ω̇ = I−1 (τactuadores) (C.4)

Consequently the resulting angular rate velocity is represented by the integration:eguinte forma:

ω(t) =

∫
τ dt = I−1 · A

2πf
· sin(2πft) + a1 (C.5)
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The simulation will impose a zero angular rate in the satellite consequently the initial condition set by the

coefficient a1 will also be zero. To simplify the angular displacement validation the torque was applied

along the first principal axis of the satellite. Using the previous equation the rotation equation can be

reduced to:

θi(t) = −
I−1
i,i ·A

(2πf)
2 · cos(2πft) + b1 (C.6)

The expected behaviour is a sinusoidal function with the an amplitude coefficient equal to set by the

torque amplitude, frequency and inertia along the first principal axis. The equation condition is setted by

the coefficient b1 which shall be setted to zero by equalling it to the sinusoidal amplitude component.

0 = −
I−1
i,i ·A

(2πf)
2 + b1 → b1 =

I−1
i,i ·A

(2πf)
2 (C.7)

Initially, we can assume the test will simulate 720 seconds therefore to have 2 cycles it needs a frequency

of f ≥ 1
360 = 0.0028 Hz. To avoid more than half revolution to both sides, the amplitude must be limited

to A = 9.5698× 10−6. Lastly, it results in the following equation:

τ =


A cos(2πft)

0

0

 (C.8)
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Figure C.5: Angular displacement simulated, θs, predicted θe and relative error ε through 720 seconds

The difference from the simulator to expected results have a maximum relative error of 0.12% after

720 seconds. However this maximum represents a spike as most 99% of the time the error is below

0.001%. These results validated the simulator dynamic model for external torques applied in one axis.
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Appendix D

Simulation Plots

D.1 Sensor Angular Error Plots

In this section the coarse sun sensor error cumulative probability is represented for the three situations

possible.
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Figure D.1: Cumulative probability function of the coarse sun sensor when only 1 photodiode is lighted
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Figure D.2: Cumulative probability function of the coarse sun sensor when 2 photodiode is lighted
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Figure D.3: Cumulative probability function of the coarse sun sensor when 3 photodiode is lighted

D.2 Attitude Determination Plots

In the present section the detail results of the attitude determination are presented through a set of

graphic data.
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Figure D.4: TRIAD attitude error for the first case during a seven orbit simulation.
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Figure D.5: TRIAD attitude error for the second case during a seven orbit simulation.
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D.2.2 QUEST
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Figure D.6: QUEST attitude error for the first case during a seven orbit simulation.
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Figure D.7: QUEST attitude error for the second case during a seven orbit simulation.

D.2.3 SVD

0

50

100

150

A
ng

ul
ar

 E
rr

or
 (

o
)

SVD

0 2 4 6 8 10
Time (h)

Figure D.8: SVD attitude error for the first case during a seven orbit simulation.
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Figure D.9: SVD attitude error for the second case during a seven orbit simulation.

D.2.4 FOAM
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Figure D.10: FOAM attitude error for the first case during a seven orbit simulation.
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Figure D.11: FOAM attitude error for the second case during a seven orbit simulation.

100



D.2.5 EQUEST
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Figure D.12: EQUEST attitude error for the first case during a seven orbit simulation.
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Figure D.13: EQUEST attitude error for the second case during a seven orbit simulation.

D.2.6 MEKF
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Figure D.14: MEKF attitude error for the first case during a seven orbit simulation.
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Figure D.15: MEKF attitude error for the second case during a seven orbit simulation.
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Figure D.16: MEKF gyro bias estimation error for the first case during a seven orbit simulation.
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Figure D.17: MEKF gyro bias estimation error for the second case during a seven orbit simulation.
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D.2.7 ECF
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Figure D.18: ECF attitude error for the first case during a seven orbit simulation.
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Figure D.19: ECF attitude error for the second case during a seven orbit simulation.
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Figure D.20: ECF gyro bias estimation error for the first case during a seven orbit simulation.
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Figure D.21: ECF gyro bias estimation error for the second case during a seven orbit simulation.

D.3 Detumbling Angular Rate Plots
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Figure D.22: B-dot Case 1 Angular Rate.
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Figure D.23: B-dot Case 2 Angular Rate.
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Figure D.24: B-dot Case 3 Angular Rate.
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Figure D.25: B-dot Case 4 Angular Rate.

D.3.2 Bang Bang B-dot
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Figure D.26: Angular rate in each body axis using the Bang-Bang B-dot in the simulation of case 1.
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Figure D.27: Angular rate in each body axis using the Bang-Bang B-dot in the simulation of case 2.
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Figure D.28: Angular rate in each body axis using the Bang-Bang B-dot in the simulation of case 3.
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Figure D.29: Angular rate in each body axis using the Bang-Bang B-dot in the simulation of case 4.
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D.3.3 Gyro Feedback
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Figure D.30: Angular rate in each body axis using the Gyro feedback for the simulation of case 1.
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Figure D.31: Angular rate in each body axis using the Gyro feedback for the simulation of case 2.
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Figure D.32: Angular rate in each body axis using the Gyro feedback for the simulation of case 3.
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Figure D.33: Angular rate in each body axis using the Gyro feedback for the simulation of case 4.
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